首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
The effect of pH (pH 5, 6 or 7) on accumulation of radiolabelled methylmercury was examined using a laboratory microcosm system. Accumulation of labelled mercury at three trophic levels, primary consumers (Daphnia magna), secondary consumers (rainbow trout, Salmo gairdneri) and tertiary consumers (walleye, Stizostedion vitreum) was not significantly affected by pH. Our results are in direct contrast with field observations of elevated methylmercury concentrations in fish from low pH water and indicate that the elevated mercury residues observed in the field result from factors other than the direct effects of pH on accumulation of methylmercury by aquatic organisms. Both water and diet were important as sources of the labelled mercury which was accumulated by walleye. Walleye which were fed rainbow trout, that had accumulated labelled mercury from within the experimental microcosms, accumulated almost twice as much labelled mercury as walleye fed non-labelled prey, or walleye which were not fed. Walleye fed non-labelled rainbow trout accumulated slightly more labelled mercury than walleye which were not fed, presumably as a result of the higher metabolic rate of the fish which were fed.  相似文献   

2.
Fish in low-alkalinity lakes having pH of 6.0-6.5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH(3) Hg(+), Cd(2+), and Pb(2+)) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.  相似文献   

3.
King JK  Harmon SM  Fu TT  Gladden JB 《Chemosphere》2002,46(6):859-870
A pilot-scale model was constructed to determine if a wetland treatment system (WTS) could effectively remove low-level mercury from an outfall located at the Department of Energy's Savannah River Site. Site-specific hydrosoil was planted with giant bulrush, Scirpus californicus, and surface amended with gypsum (CaSO4) prior to investigating the biogeochemical dynamics of sediment-based sulfur and mercury speciation. On average, the pilot WTS decreased total mercury concentrations in the outfall stream by 50%. Transformation of mercury to a more "bioavailable" species, methylmercury, was also observed in the wetland treatment system. Methylmercury formation in the wetland was ascertained with respect to sediment biogeochemistry and S. californicus influences. Differences in sulfate-reduction rates (SRRs) were observed between mesocosms that received additional decomposing Scirpus matter and mesocosms that were permitted growth of the submerged macrophyte, Potamogeton pusillus. Relative abundance measurements of sulfate-reducing bacteria (SRB) as characterized using oligonucleotide probes were also noticeably different between the two mesocosms. A positive correlation between increased sulfide, dissolved total mercury, and dissolved methylmercury concentrations was also observed in porewater. The data suggest that soluble mercury-sulfide complexes were formed and contributed, in part, to a slight increase in mercury solubility. Observed increases in methylmercury concentration also suggest that soluble mercury-sulfide complexes represent a significant source of mercury that is "available" for methylation. Finally, a volunteer macrophyte, Potamogeton pusillus, is implicated as having contributed additional suspended particulate matter in surface water that subsequently reduced the pool of dissolved mercury while also providing an environment suitable for demethylation.  相似文献   

4.
Mercury contamination in freshwater food webs can be severe and persistent, and freshwater fish are a major source of mercury contamination in humans. Northern hemisphere studies suggest that the primary pathway by which freshwater fish accumulate mercury is the food web, and that atmospheric deposition is the primary route by which mercury enters freshwater systems. Levels of atmospheric deposition are closely linked to proximity to sources of mercury emissions. These propositions have not been tested in the southern hemisphere. In this study, we measured mercury levels at three lakes in southern Brazil and assessed relationships between mercury in precipitation, lake water, sediment and fish tissues at sites close to (industrial and suburban areas) and distant from (protected conservation area) sources of mercury emissions. We also assessed relationships between mercury in fish species and their trophic habits. Mercury concentrations in sediment and lake water did not vary among lakes. In contrast, mercury in precipitation at the study lakes increased with proximity to industrial sources. Mercury in fish tissue generally increased along the same gradient, but also varied with trophic level and preferred depth zone. Atmospheric mercury deposition to these closed lakes may be directly linked to concentrations in fish, with surface-feeding piscivorous species attaining the highest concentrations.  相似文献   

5.
This study used an experimental model of a constructed wetland to evaluate the risk of mercury methylation when the soil is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce copper, mercury, and metal-related toxicity in a wastestream. The sediments of the model were varied during construction to provide a control and two levels of sulfate treatment, thus allowing characterization of sulfate's effect on mercury methylation and bioaccumulation in periphyton and two species of fish--eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta). After one year in the experimental model, mean dry-weight normalized total mercury concentrations in mosquitofish from the non-sulfate treated controls (374+/-77 ng/g) and the reference location (233+/-17 ng/g) were significantly lower than those from the low and high sulfate treatments (520+/-73 and 613+/-80 ng/g, respectively). For lake chubsucker, mean total mercury concentration in fish from the high sulfate treatment (276+/-63 ng/g) was significantly elevated over that observed in the control (109+/-47 ng/g), the low sulfate treatment (122+/-42 ng/g), and the reference population (41+/-2 ng/g). Mercury in periphyton was mostly inorganic as methylmercury ranged from 6.6 ng/g (dry weight) in the control to 9.8 ng/g in the high sulfate treatment, while total mercury concentrations ranged from 1147 ng/g in the control to a high of 1297 ng/g in the low sulfate treatment. Fish methylmercury bioaccumulation factors from sediment ranged from 52 to 390 and from 495 to 3059 for water. These results suggest that sulfate treatments add a factor of risk due to elevated production of methylmercury in sediment and porewater which biomagnified into small fish, and may potentially increase through the food web.  相似文献   

6.
Wild piscivorous fish, mammals, and birds may be at risk for elevated dietary methylmercury intake and toxicity. In controlled feeding studies, the consumption of diets that contained Hg (as methylmercury) at environmentally realistic concentrations resulted in a range of toxic effects in fish, birds, and mammals, including behavioral, neurochemical, hormonal, and reproductive changes. Limited field-based studies, especially with certain wild piscivorous bird species, e.g., the common loon, corroborated laboratory-based results, demonstrating significant relations between methylmercury exposure and various indicators of methylmercury toxicity, including reproductive impairment. Potential population effects in fish and wildlife resulting from dietary methylmercury exposure are expected to vary as a function of species life history, as well as regional differences in fish-Hg concentrations, which, in turn, are influenced by differences in Hg deposition and environmental methylation rates. However, population modeling suggests that reductions in Hg emissions could have substantial benefits for some common loon populations that are currently experiencing elevated methylmercury exposure. Predicted benefits would be mediated primarily through improved hatching success and development of hatchlings to maturity as Hg concentrations in prey fish decline. Other piscivorous species may also benefit from decreased Hg exposure but have not been as extensively studied as the common loon.  相似文献   

7.
Mugu Lagoon is an estuary in southern California, listed as impaired for mercury. In 2005, we examined mercury cycling at ten sites within at most four habitats. In surface water (unfiltered and filtered) and pore water, the concentration of total mercury was correlated with methylmercury levels (R2=0.29, 0.26, 0.27, respectively, p<0.05), in contrast to sediments, where organic matter and reduced iron levels were most correlated with methylmercury content (R2=0.37, 0.26, respectively, p<0.05). Interestingly, levels for percent methylmercury of total mercury in sediments were higher than typical values for estuarine sediments (average 5.4%, range 0.024-38%, n=59), while pore water methylmercury Kd values were also high (average 3.1, range 2.0-4.2l kg(-1), n=39), and the estimated methylmercury flux from sediments was low (average 1.7, range 0.14-5.3ng m(-2) day(-1), n=19). Mercury levels in predatory fish tissue at Mugu are >0.3ppm, suggesting biogeochemical controls on methylmercury mobility do not completely mitigate methylmercury uptake through the food web.  相似文献   

8.
Laboratory experiments were carried out to study the influence of temperature (24, 28 and 30 °C) and pH (1–10) on organic mercury (CH3HgCl) transfer and accumulation in an experimental ecotoxicological model. We followed the evolution of CH3HgCl in a basic model (water+air) by varying temperature and pH. In a second step, we completed the model by adding sediment and fish. We added CH3HgCl to water at the beginning of each experiment which was repeated at least three times. Results demonstrated that mercury was released from methylmercury into the air regardless of water pH and its concentration in the air increased with increasing pH. By contrast, in presence of sediment, almost all the mercury was fixed onto the sediment and no mercury was traced in air or in water. Interestingly, in the presence of sediment, the life span of fish under methylmercury exposure lasted longer despite their higher mercury body level content at their death. These results indicate that water is a bad exposure indicator for aquatic pollution. In case of chronic pollution, sediments, fish and aquatic plants are more appropriate indicators.  相似文献   

9.
Laboratory experiments were carried out to study the influence of temperature (24, 28 and 30 °C) and pH (1–10) on organic mercury (CH3HgCl) transfer and accumulation in an experimental ecotoxicological model. We followed the evolution of CH3HgCl in a basic model (water+air) by varying temperature and pH. In a second step, we completed the model by adding sediment and fish. We added CH3HgCl to water at the beginning of each experiment which was repeated at least three times. Results demonstrated that mercury was released from methylmercury into the air regardless of water pH and its concentration in the air increased with increasing pH. By contrast, in presence of sediment, almost all the mercury was fixed onto the sediment and no mercury was traced in air or in water. Interestingly, in the presence of sediment, the life span of fish under methylmercury exposure lasted longer despite their higher mercury body level content at their death. These results indicate that water is a bad exposure indicator for aquatic pollution. In case of chronic pollution, sediments, fish and aquatic plants are more appropriate indicators.  相似文献   

10.
Total mercury intake from fish and shellfish by Japanese people   总被引:4,自引:0,他引:4  
Elevated mercury concentrations have been reported in fish in recent years. Japanese people eat a great deal of raw fishes and shellfishes as “Sashimi” and “Sushi”. The action level of large predatory fish such as tuna with total mercury levels exceeding the Japanese maximum permitted limit of 0.4 ppm is exempted from regulation in Japan. Therefore, current total mercury intake from fish and shellfish of Japanese people is unknown. The purpose of this investigation was to estimate the total mercury intake from fish and shellfish. It was found that the mean total mercury concentration of 1.11 ppm in tuna of eatable base as Sashimi or Sushi was clearly higher than the normal level. The mean total mercury intake from fish and shellfish was 0.17mg per capita per week . According to the hypothesis that 75% of total mercury in fish and shellfish is methylmercury, the weekly intake of 0.13 mg as methylmercury was corresponding amount to about 74% of provisional tolerable weekly intake 0.17 mg of methylmercury set by the Welfare Ministry of Japan.  相似文献   

11.
The environmental influence on the mercury content in roach (Rutilus rutilus L.) is investigated using partial least square regression on 46 environmental variables describing the land use in the catchment area, various catchment area and lake characteristics, lake water chemistry, and fish stock. The Hg content in the fish from the 78 investigated circumneutral lakes is heavily influenced by the land use in their surroundings. The boreal forest lakes possessed the highest Hg levels in roach, whereas fish from lakes surrounded by arable land had lower levels. The Hg levels also showed a negative relationship to the amount of dissolved ions and the total amount of nutrients in lake water. Lake pH did not have any significant influence on the Hg content in roach in these non-acidified lakes. The Hg levels in lakes influenced by large amounts of wetland were less well explained by the presently investigated environmental variables, which implies that the Hg burden in fish from this kind of lake is governed by other factors.  相似文献   

12.
Scavengers play an important role in the flow of energy, matter and pollutants through food webs. For methylmercury (MeHg), which biomagnifies along food chains, the movement of this metal from fish carcasses to aquatic scavengers has never been demonstrated. We measured the transfer of MeHg from fish carcasses to scavenging leeches in two lakes and in the laboratory. The results of a field experiment indicated that leeches were attracted to fish carcasses and that their Hg concentrations increased by as much as a factor of 5 during the time that Hg-rich fish were available for consumption. Under controlled conditions, we exposed leeches to (202)Hg-labelled fish that had been marked in situ following a whole lake (202)Hg addition. Leeches rapidly accumulated Hg from carcasses, and within two weeks assumed the isotopic signature of the carcasses. Necrophagous invertebrates could therefore return Hg from fish carcasses to other trophic levels in lakes.  相似文献   

13.
A one hectare pond on the headwaters of a mercury-contaminated creek in Oak Ridge, Tennessee acted as a biochemical reactor for the production of methylmercury, increasing waterborne methylmercury concentrations in the stream below the pond discharge. The flow of the creek was diverted around the pond in order to eliminate this input. Waterborne total mercury, methylmercury, and mercury in fish, were monitored in the pond and stream before and after bypass. Waterborne methylmercury concentration in the creek downstream from the pond decreased over 800% following diversion of streamflow around the pond, but mercury in redbreast sunfish in the pond tailwater did not decline similarly. Within the pond, now isolated from fresh waterborne mercury inputs from the stream, methylmercury concentrations in the water column remained similar to levels present before bypass. However, mercury concentrations in sunfish in the pond decreased approximately 75% following bypass, despite the continued presence of highly contaminated sediments (approximately 50 mg Hg/kg dry weight). We concluded that a decrease in the fraction of 'dissolved methylmercury' in the isolated pond relative to pre-bypass conditions explained the decrease in mercury in fish within the pond. That observation also indicates that mercury associated with pond sediments was relatively unavailable for eventual bioaccumulation when compared to 'fresh' mercury contributed by upstream sources. The lack of a post-bypass decrease in mercury concentrations in tailwater fish was also likely to be associated with the particle-associated nature of waterborne methylmercury exported from the pond.  相似文献   

14.
A home-modified atomic fluorescence detector (mAFS) has been employed for mercury and methylmercury determination in bivalves from the Andalusian coast (south Spain). This modification consists on the inclusion of a quartz flow cell into the detector, which increases the concentration of mercury atoms in the detector and therefore enhances sensitivity about two fold. Two analytical approaches for mercury speciation based on the coupling of gas chromatography on-line pyrolysis and mAFS (GC-Pyro-mAFS) have been tested. The first approach (Method 1) is based on aqueous ethylation followed by extraction into an organic solvent, and the second one (Method 2) in the extraction of monoalkylated mercury as chloride. Method 1 is a rapid procedure but not sensitive enough for the analysis of methylmercury in non-polluted sites (detection limit: 20 ng g(-1) as mercury, wet basis). The second one is quite more sensitive (detection limit: 0.2 ng g(-1), wet weight), but sample treatment is cumbersome and time-consuming. The optimum range for mercury determination for both methods are complementary and exhibit an overlapping measurable concentration range (OMCR) in which methylmercury can be indistinctly determined (75-100 ng g(-1) as mercury, wet basis). The suitability of both methods has been assayed with spiking experiences at levels within the OMCR with good recoveries. Both approaches have been validated with two certified reference materials (BCR-463, mercury and methylmercury in tuna fish; and NIST-2977, organic contaminants and trace metals in mussel tissue). Both procedures have been used for the analysis of three species of bivalve molluscs collected along the Andalusian coast (south Spain), all of them employed for human consumption (Chamelea gallina, Donax trunculus and Scrobicularia plana), and their potential use in routine analysis has been established.  相似文献   

15.
Surface sediments of the lagoons of Lomé, Togo, were analyzed for mercury, methylmercury, and trace elements. Concentrations were greater than typical for natural lagoon sediments, and with greater variability within the Eastern lagoon compared to the Western one. The Eastern lagoon is larger and has been dredged in the past, while the Western lagoon, which also receives major waste inputs, has not been dredged and shows less tidal flushing. Accordingly, one naturally believes that the Eastern lagoon is cleaner and probably safe to use due to its natural resources, including fishes to eat. Unexpectedly, we describe here that mercury methylation was greater in the Eastern lagoon, indicating increased bioavailability of mercury, as probably facilitated by past dredging that decreased solid-phase retention of inorganic mercury. Urbanization has historically been more developed in the southern part of the lagoons, which is still reflected in contamination levels of sediment despite dredging, probably because sources of contamination are still more important there today. Such urban contamination emphasizes the need to regulate waste discharges and possible airborne contamination in growing cities of developing countries, and implements environmental and public health monitoring, especially in relation to misbelieves systematically associated with the cleansing effect of dredging activity.  相似文献   

16.
Lindeström L 《Ambio》2001,30(8):538-544
The past effluents of mercury (Hg) into Lake V?nern were considerable. The consequences of, and recovery from these have been monitored through continuous measurements of mercury in sediment and fish. Mercury levels in lake sediments in the vicinity of the main source of mercury, a chloralkali plant on the northern shore, have only decreased by slightly more than a half since the mid-1970s, despite a radical decrease in effluents from the source, already during the 1960s. The mercury levels in pike (Esox lucius) have decreased to a similar extent during this time period. They are now about 30% higher in the worst affected parts of the lake compared to the least affected parts. Lower levels have been measured in perch (Perca fluviatilis) and salmonoid fish in the lake. Despite the increased presence of mercury in the sediment of Lake V?nern, the mercury levels in the fish of the lake are relatively low compared to fish in lakes situated in the same region, but not affected by any local mercury effluents. As calculated, the total fish biomass of L. V?nern holds less than 1000th of the amount of mercury contained in the upper, biologically active layers of the bottom sediment of the lake. This demonstrates the potential influence of various environmental factors and motivates continued monitoring of mercury levels in the lake in the future.  相似文献   

17.
Since the 19th century, large amounts of industrial waste were dumped in a reservoir adjacent to a chlor-alkali plant in the lower Ebro River (NE Spain). Previous toxicological analysis of carp populations inhabiting the surveyed area have shown that the highest biological impact attributable to mercury pollution occurred downstream of the discharge site. However, mercury speciation in fish from this polluted area has not been addressed yet. Thus, in the present study, piscivorous European catfish (Silurus glanis) and non-piscivorous common carp (Cyprinus carpio) were selected, to investigate the bioavailability and bioaccumulation capacities of both total mercury (THg) and methylmercury (MeHg) at the discharge site and downstream points. Multiple Correspondence Analysis (MCA) was applied to reduce the dimensionality of the data set, and Multiple Linear Regression (MLR) models were fitted in order to assess the relationship between both Hg species in fish and different variables of interest. Mercury levels in fish inhabiting the dam at the discharge site were found to be approximately 2-fold higher than those from an upstream site; while mercury pollution progressively increased downstream of the hot spot. In fact, both THg and MeHg levels at the farthest downstream point were 3 times greater than those close to the waste dump. This result clearly indicates downstream transport and increased mercury bioavailability as a function of distance downstream from the contamination source. A number of factors may affect both the downstream transport and increased Hg bioavailability associated with suspended particulate matter (SPM) and dissolved organic carbon (DOC).  相似文献   

18.
Mercury in fish in Swedish lakes   总被引:5,自引:0,他引:5  
The aim of this work has been to try to obtain a picture of the past, present and future mercury situation in fish in Swedish lakes, to make an estimate of the number of lakes threatened by 'blacklisting', and to see if the data can be used to reveal anything about the impact of liming on the Hg content in pike. The register contains a broad set of data from 1456 lakes. The main results are as follows. Trend analyses indicate that the Hg content in 1-kg pike seems to increase with time. This is interesting since there has been a significant decrease in mercury emissions from Swedish industries during the last two decades. High Hg contents in 1-kg pike appear in a very characteristic pattern, linked to specific sources of Hg emission. The data indicate that old Swedish 'sins' are still causing a lot of problems. The factors governing the leakage of Hg from soils to water ought to be a very important topic for further studies. The Hg content in pike shows the highest correlation with the following parameters: Hg in surficial sediments, pH, distance from point source and water hardness, lake water alkalinity and conductivity, water retention time, size of drainage area and lake surface. A formula which provides the best possible degree of explanation (r2 = 0.78) has been derived. At present there are about 250 lakes 'blacklisted' in Sweden due to high Hg content in fish. Our data show that there are at least 9400 lakes that ought to be 'blacklisted' today. A successful liming operation will alter the chemical conditions in lakes and also decrease the Hg content in fish.  相似文献   

19.
A 4year study surveyed 131 lakes across New York State beginning in 2003 to improve our understanding of mercury and gather information from previously untested waters. Our study focused on largemouth and smallmouth bass, walleye and yellow perch, common piscivorous fish shown to accumulate high mercury concentrations and species important to local fisheries. Fish from Adirondack and Catskill Forest Preserve lakes generally had higher mercury concentrations than those from lakes in other areas of the state. Variability between nearby individual lakes was observed, and could be due to differences in water chemistry, lake productivity or the abundance of wetlands in the watershed. We found the following factors impact mercury bioaccumulation: fish length, lake pH, specific conductivity, chlorophyll a, mercury concentration in the water, presence of an outlet dam and amount of contiguous wetlands.  相似文献   

20.
Recovery of mercury-contaminated fisheries   总被引:2,自引:0,他引:2  
In this paper, we synthesize available information on the links between changes in ecosystem loading of inorganic mercury (Hg) and levels of methylmercury (MeHg) in fish. Although it is widely hypothesized that increased Hg load to aquatic ecosystems leads to increases in MeHg in fish, there is limited quantitative data to test this hypothesis. Here we examine the available evidence from a range of sources: studies of ecosystems contaminated by industrial discharges, observations of fish MeHg responses to changes in atmospheric load, studies over space and environmental gradients, and experimental manipulations. A summary of the current understanding of the main processes involved in the transport and transformation from Hg load to MeHg in fish is provided. The role of Hg loading is discussed in context with other factors affecting Hg cycling and bioaccumulation in relation to timing and magnitude of response in fish MeHg. The main conclusion drawn is that changes in Hg loading (increase or decrease) will yield a response in fish MeHg but that the timing and magnitude of the response will vary depending of ecosystem-specific variables and the form of the Hg loaded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号