首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract: The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species‐specific differences in susceptibility to this pathogen. We used a comparative experimental approach to examine Bd susceptibility in 6 amphibian species from the United States. We exposed postmetamorphic animals to Bd for 30 days and monitored mortality, feeding rates, and infection levels. In all species tested, Bd‐exposed animals had higher rates of mortality than unexposed (control) animals. However, we found differences in mortality rates among species even though the amount of Bd detected on the different species’ bodies did not differ. Of the species tested, southern toads (Anaxyrus terrestris) and wood frogs (Lithobates sylvaticus) had the highest rates of Bd‐related mortality. Within species, we detected lower levels of Bd on individuals that survived longer and found that the relationship between body size and infection levels differed among species. Our results indicate that, even under identical conditions, amphibian species differ in susceptibility to Bd. This study represents a step toward identifying and understanding species variation in disease susceptibility, which can be used to optimize conservation strategies.  相似文献   

2.
Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is widespread among amphibians in northeastern North America. It is unknown, however, whether Bd has the potential to cause extensive amphibian mortalities in northeastern North America as have occurred elsewhere. In the laboratory, we exposed seven common northeastern North American amphibian species to Bd to assess the likelihood of population-level effects from the disease. We exposed larval wood frogs (Lithobates sylvaticus) and postmetamorphic frogs of six other species to two different strains of Bd, a northeastern strain (JEL404) and a strain that caused die-offs of amphibians in Panama (JEL423), under ideal in vitro growth conditions for Bd. Exposed American toads (Anaxyrus americanus) all died; thus, this species may be the most likely to die from Bd-caused disease in the wild. Both Bd strains were associated with mortalities of wood frogs, although half the metamorphs survived. The Bd strain from Panama killed metamorphic green frogs (L. clamitans), whereas the northeastern strain did not, which means novel strains of Bd may lead to death even when local strains may not. No mortality was observed in four species (bullfrogs [L. catesbeianus], northern leopard frogs [L. pipiens], spring peepers [Pseudacris crucifer], and blue-spotted salamanders [Ambystoma laterale]) and in some individuals of green frogs and wood frogs that we exposed. This finding suggests these six species may be Bd vectors. Our results show that systematic exposures of amphibian species to Bd in the laboratory may be a good first step in the identification of species susceptible to Bd-caused declines and in directing regional conservation efforts aimed at susceptible species.  相似文献   

3.
Abstract: Ecological theory predicts that species with restricted geographic ranges will have the highest probability of extinction, but species with extensive distributions and high population densities can also exhibit widespread population losses. In the western United States populations of northern leopard frogs (Lithobates pipiens)—historically one of the most widespread frogs in North America—have declined dramatically in abundance and geographic distribution. To assess the status of leopard frogs in Colorado and evaluate causes of decline, we coupled statewide surveys of 196 historically occupied sites with intensive sampling of 274 wetlands stratified by land use. We used an information‐theoretic approach to evaluate the contributions of factors at multiple spatial extents in explaining the contemporary distribution of leopard frogs. Our results indicate leopard frogs have declined in Colorado, but this decline was regionally variable. The lowest proportion of occupied wetlands occurred in eastern Colorado (2–28%), coincident with urban development and colonization by non‐native bullfrogs (Lithobates catesbeianus). Variables at several spatial extents explained observed leopard frog distributional patterns. In low‐elevation wetlands introduced fishes, bullfrogs, and urbanization or suburbanization associated negatively with leopard frog occurrence, whereas wetland area was positively associated with occurrence. Leopard frogs were more abundant and widespread west of the Continental Divide, where urban development and bullfrog abundance were low. Although the pathogenic chytrid Batrachochytrium dendrobatidis (Bd) was not selected in our best‐supported models, the nearly complete extirpation of leopard frogs from montane wetlands could reflect the individual or interactive effects of Bd and climate patterns. Our results highlight the importance of considering multiple, competing hypotheses to explain species declines, particularly when implicated factors operate at different spatial extents.  相似文献   

4.
Abstract: Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200–3700 m). We used visual encounter surveys to sample stream‐dwelling and arboreal species and leaf‐litter plots to sample terrestrial‐breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream‐dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial‐breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream‐dwelling and arboreal frogs were lower in the combined 2008–2009 period than in 1999, whereas densities of frogs in leaf‐litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness.  相似文献   

5.
Anthropogenic-derived stressors in the environment, such as contaminants, are increasingly considered important cofactors that may decrease the immune response of amphibians to pathogens. Few studies, however, have integrated amphibian disease and contaminants to test this multiple-stressor hypothesis for amphibian declines. We examined whether exposure to sublethal concentrations of a glyphosate-based herbicide and two strains of the pathogenic chytrid fungus, Batrachochrytrium dendrobatidis (Bd) could: (1) sublethally affect wood frogs (Lithobates sylvaticus) by altering the time to and size at metamorphosis, and (2) directly affect survivability of wood frogs after metamorphosis. Neither Bd strain nor herbicide exposure alone significantly altered growth or time to metamorphosis. The two Bd strains did not differ in their pathogenicity, and both caused mortality in post-metamorphic wood frogs. There was no evidence of an interaction between treatments, indicating a lack of herbicide-induced susceptibility to Bd. However, the trends in our data suggest that exposure of wood frogs to a high concentration of glyphosate-based herbicide may reduce Bd-caused mortality compared to animals exposed to Bd alone. These results exemplify the complexities inherent when populations are coping with multiple stressors. In this case, the perceived stressor, glyphosate-based herbicide, appeared to affect the pathogen more than the host's immune system, relieving the host from disease-caused effects. This suggests caution when invoking multiple stressors as a cause for increased disease susceptibility and indicates that the effects of multiple stressors on disease outcome depend on the interrelationships of stressors to both the pathogen and the host.  相似文献   

6.
Abstract: Sport‐fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of survival, local recruitment, and migration to changes in population densities. I conducted a 4‐year, replicated whole‐lake experiment in the Klamath Mountains of northern California (U.S.A.) to quantify changes in population density, survival, population growth rate, and recruitment of the Cascades frog (Rana cascadae) in response to manipulations of non‐native fish populations. I compared responses of the frogs in lakes where fish were removed, in lakes in their naturally fish‐free state, and in lakes where fish remained that were either stocked annually or no longer being stocked. Within 3 years of fish removals from 3 lakes, frog densities increased by a factor of 13.6. The survival of young adult frogs increased from 59% to 94%, and realized population growth and recruitment rates at the fish‐removal lakes were more than twice as high as the rates for fish‐free reference lakes and lakes that contained fish. Population growth in the fish‐removal lakes was likely due to better on‐site recruitment of frogs to later life stages rather than increased immigration. The effects on R. cascadae of suspending stocking were ambiguous and suggested no direct benefit to amphibians. With amphibians declining worldwide, these results show that active restoration can slow or reverse the decline of species affected by fish stocking within a short time frame.  相似文献   

7.
Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection‐prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate‐warming stress. Fisiología Termal, Enfermedades y Disminuciones de Anfibios en las Laderas Orientales de los Andes  相似文献   

8.
Abstract: Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture–recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31–42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5–7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low‐level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations.  相似文献   

9.
Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology.  相似文献   

10.
{en} Over the past decades, much research has focused on understanding the critical factors for marine extinctions with the aim of preventing further species losses in the oceans. Although conservation and management strategies are enabling several species and populations to recover, others remain at low abundance levels or continue to decline. To understand these discrepancies, we used a published database on abundance trends of 137 populations of marine mammals worldwide and compiled data on 28 potentially critical factors for recovery. We then applied random forests and additive mixed models to determine which intrinsic and extrinsic factors are critical for the recovery of marine mammals. A mix of life‐history characteristics, ecological traits, phylogenetic relatedness, population size, geographic range, human impacts, and management efforts explained why populations recovered or not. Consistently, species with lower age at maturity and intermediate habitat area were more likely to recover, which is consistent with life‐history and ecological theory. Body size, trophic level, social interactions, dominant habitat, ocean basin, and habitat disturbance also explained some differences in recovery patterns. Overall, a variety of intrinsic and extrinsic factors were important for species’ recovery, pointing to cumulative effects. Our results provide insight for improving conservation and management strategies to enhance recoveries in the future.  相似文献   

11.
Abstract:  Genetic diversity may buffer amphibian populations against environmental vicissitudes. We hypothesized that wood frogs (  Rana sylvatica ) from populations with lower genetic diversity are more susceptible to ultraviolet-B (UV-B) radiation than those from populations with higher diversity. We used RAPD markers to obtain genetic diversity estimates for 12 wood frog populations. We reared larval wood frogs from these populations and exposed experimental groups of eggs and larvae to one of three treatments: unfiltered sunlight, sunlight filtered through a UV-B-blocking filter (Mylar), and sunlight filtered through a UV-B-transmitting filter (acetate). In groups exposed to UV-B, larval mortality and deformity rates increased significantly, but egg mortality did not. We found a significant negative relationship between genetic diversity and egg mortality, larval mortality, and deformity rates. Furthermore, the interaction between UV-B treatment and genetic diversity significantly affected larval mortality. Populations with low genetic diversity experienced higher larval mortality rates when exposed to UV-B than did populations with high genetic diversity. This is the first time an interaction between genetic diversity and an environmental stressor has been documented in amphibians. Differences in genetic diversity among populations, coupled with environmental stressors, may help explain patterns of amphibian decline.  相似文献   

12.
Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts—species that carry infection while maintaining high abundance but are rarely killed by disease—can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species.  相似文献   

13.
Abstract: Successful protection of biodiversity requires increased understanding of the ecological characteristics that predispose some species to endangerment. Theory posits that species with polymorphic or variable coloration should have larger distributions, use more diverse resources, and be less vulnerable to population declines and extinctions, compared with taxa that do not vary in color. We used information from literature on 194 species of Australian frogs to search for associations of coloration mode with ecological variables. In general, species with variable or polymorphic color patterns had larger ranges, used more habitats, were less prone to have a negative population trend, and were estimated as less vulnerable to extinction compared with nonvariable species. An association of variable coloration with lower endangerment was also evident when we controlled statistically for the effects of range size. Nonvariable coloration was not a strong predictor of endangerment, and information on several characteristics is needed to reliably identify and protect species that are prone to decline and may become threatened by extinction in the near future. Analyses based on phylogenetic‐independent contrasts did not support the hypothesis that evolutionary transitions between nonvariable and variable or polymorphic coloration have been accompanied by changes in the ecological variables we examined. Irrefutable demonstration of a role of color pattern variation in amphibian decline and in the dynamics and persistence of populations in general will require a manipulative experimental approach.  相似文献   

14.
Abstract:  Estimating disease-associated mortality and transmission processes is difficult in free-ranging wildlife but important for understanding disease impacts and dynamics and for informing management decisions. In a capture–mark–recapture study, we used a PCR-based diagnostic test in combination with multistate models to provide the first estimates of disease-associated mortality and detection, infection, and recovery rates for frogs endemically infected with the chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes the pandemic amphibian disease chytridiomycosis. We found that endemic chytridiomycosis was associated with a substantial reduction (approximately 38%) in apparent monthly survival of the threatened rainforest treefrog Litoria pearsoniana despite a long period of coexistence (approximately 30 years); detection rate was not influenced by disease status; improved recovery and reduced infection rates correlated with decreased prevalence, which occurred when temperatures increased; and incorporating changes in individuals' infection status through time with multistate models increased effect size and support (98.6% vs. 71% of total support) for the presence of disease-associated mortality when compared with a Cormack–Jolly–Seber model in which infection status was restricted to the time of first capture. Our results indicate that amphibian populations can face significant ongoing pressure from chytridiomycosis long after epidemics associated with initial Bd invasions subside, an important consideration for the long-term conservation of many amphibian species worldwide. Our findings also improve confidence in estimates of disease prevalence in wild amphibians and provide a general framework for estimating parameters in epidemiological models for chytridiomycosis, an important step toward better understanding and management of this disease.  相似文献   

15.
Abstract: Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land‐use and habitat conservation is challenging, and well‐informed land‐use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high‐quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state‐level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool‐breeding amphibians. We also found that species with different life‐history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer‐lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.  相似文献   

16.
Persecution and overexploitation by humans are major causes of species extinctions. Rare species, often confined to small geographic ranges, are usually at highest risk, whereas extinctions of superabundant species with very large ranges are rare. The Yellow‐breasted Bunting (Emberiza aureola) used to be one of the most abundant songbirds of the Palearctic, with a very large breeding range stretching from Scandinavia to the Russian Far East. Anecdotal information about rapid population declines across the range caused concern about unsustainable trapping along the species’ migration routes. We conducted a literature review and used long‐term monitoring data from across the species’ range to model population trend and geographical patterns of extinction. The population declined by 84.3–94.7% between 1980 and 2013, and the species’ range contracted by 5000 km. Quantitative evidence from police raids suggested rampant illegal trapping of the species along its East Asian flyway in China. A population model simulating an initial harvest level of 2% of the population, and an annual increase of 0.2% during the monitoring period produced a population trajectory that matched the observed decline. We suggest that trapping strongly contributed to the decline because the consumption of Yellow‐breasted Bunting and other songbirds has increased as a result of economic growth and prosperity in East Asia. The magnitude and speed of the decline is unprecedented among birds with a comparable range size, with the exception of the Passenger Pigeon (Ectopistes migratorius), which went extinct in 1914 due to industrial‐scale hunting. Our results demonstrate the urgent need for an improved monitoring of common and widespread species’ populations, and consumption levels throughout East Asia.  相似文献   

17.
Abstract: Sustainable strategies to manage infectious diseases in threatened wildlife are still lacking despite considerable concern over the global increase in emerging infectious diseases of wildlife and their potential to drive populations to extinction. Selective culling of infected individuals will often be the most feasible option to control infectious disease in a threatened wildlife host, but has seldom been implemented or evaluated as a management tool for the conservation of threatened species. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by an infectious cancer, devil facial tumor disease (DFTD). We assess the success of an adaptive management trial involving selective culling of infected Tasmanian devils to control DFTD. Demographic and epidemiological parameters indicative of disease progression and impact were compared between the management site and a comparable unmanaged control site. Selective culling of infected individuals neither slowed rate of disease progression nor reduced population‐level impacts of this debilitating disease. Culling mortality simply compensated for disease mortality in this system. Failure of selective culling to impede DFTD progress and reduce its impacts in the managed population was attributed to DFTD's frequency‐dependent nature, its long latent period and high degree of infectivity, and the presence of a cryptic hidden disease reservoir or continual immigration of diseased individuals. We suggest that increasing the current removal rate and focusing removal efforts prior to the breeding season are options worth pursuing for future management of DFTD in this population. On the basis of our experience, we suggest that disease‐management programs for threatened wildlife populations be developed on the principles of adaptive management and utilize a wide variety of strategies with regular reviews and adaptation of strategies undertaken as new information is obtained.  相似文献   

18.
Abstract: Chytridiomycosis, the emerging disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) is responsible for declines and extirpations of amphibian populations worldwide. Environmental covariates modify the host‐Bd interaction and thus affect the ongoing spread of the pathogen. One such covariate may be the intensity of ultraviolet B (UV‐B) radiation. In a field experiment conducted in Laguna Grande de Peñalara (central Spain), a mountainous region where the presence of Bd has been documented since 1997, we analyzed the potential effect of environmental UV‐B (daily maximum 2.5–3.9 W/m2) on the susceptibility of larvae of the common toad (Bufo bufo) to Bd. The proportion of infected individuals increased as tadpoles developed. The prevalence of Bd was significantly lower in tadpoles exposed to environmental UV‐B intensities (2.94%) than in tadpoles not exposed to the radiation (9.72%). This finding mirrors that seen for a second amphibian species, the European midwife toad (Alytes obstetricans), for which conditional prevalence (i.e., prevalence of infection conditioned on the probability of a site being infected) across the Iberian Peninsula was inversely correlated with the intensity of UV‐B.  相似文献   

19.
The conservation of wildlife requires management based on quantitative evidence, and especially for large carnivores, unraveling cause‐specific mortalities and understanding their impact on population dynamics is crucial. Acquiring this knowledge is challenging because it is difficult to obtain robust long‐term data sets on endangered populations and, usually, data are collected through diverse sampling strategies. Integrated population models (IPMs) offer a way to integrate data generated through different processes. However, IPMs are female‐based models that cannot account for mate availability, and this feature limits their applicability to monogamous species only. We extended classical IPMs to a two‐sex framework that allows investigation of population dynamics and quantification of cause‐specific mortality rates in nonmonogamous species. We illustrated our approach by simultaneously modeling different types of data from a reintroduced, unhunted brown bear (Ursus arctos) population living in an area with a dense human population. In a population mainly driven by adult survival, we estimated that on average 11% of cubs and 61% of adults died from human‐related causes. Although the population is currently not at risk, adult survival and thus population dynamics are driven by anthropogenic mortality. Given the recent increase of human‐bear conflicts in the area, removal of individuals for management purposes and through poaching may increase, reversing the positive population growth rate. Our approach can be generalized to other species affected by cause‐specific mortality and will be useful to inform conservation decisions for other nonmonogamous species, such as most large carnivores, for which data are scarce and diverse and thus data integration is highly desirable.  相似文献   

20.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock‐on effects for community structure. Based on our results, salt may be an effective field‐based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号