首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co‐benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co‐benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. Identificación de Áreas en Brasil que Optimizan la Conservación del Carbono del Bosque, Jaguares y la Biodiversidad.  相似文献   

2.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   

3.
After their failure to achieve a significant reduction in the global rate of biodiversity loss by 2010, world governments adopted 20 new ambitious Aichi biodiversity targets to be met by 2020. Efforts to achieve one particular target can contribute to achieving others, but different targets may sometimes require conflicting solutions. Consequently, lack of strategic thinking might result, once again, in a failure to achieve global commitments to biodiversity conservation. We illustrate this dilemma by focusing on Aichi Target 11. This target requires an expansion of terrestrial protected area coverage, which could also contribute to reducing the loss of natural habitats (Target 5), reducing human‐induced species decline and extinction (Target 12), and maintaining global carbon stocks (Target 15). We considered the potential impact of expanding protected areas to mitigate global deforestation and the consequences for the distribution of suitable habitat for >10,000 species of forest vertebrates (amphibians, birds, and mammals). We first identified places where deforestation might have the highest impact on remaining forests and then identified places where deforestation might have the highest impact on forest vertebrates (considering aggregate suitable habitat for species). Expanding protected areas toward locations with the highest deforestation rates (Target 5) or the highest potential loss of aggregate species’ suitable habitat (Target 12) resulted in partially different protected area network configurations (overlapping with each other by about 73%). Moreover, the latter approach contributed to safeguarding about 30% more global carbon stocks than the former. Further investigation of synergies and trade‐offs between targets would shed light on these and other complex interactions, such as the interaction between reducing overexploitation of natural resources (Targets 6, 7), controlling invasive alien species (Target 9), and preventing extinctions of native species (Target 12). Synergies between targets must be identified and secured soon and trade‐offs must be minimized before the options for co‐benefits are reduced by human pressures.  相似文献   

4.
Abstract: There is a growing recognition that conservation often entails trade‐offs. A focus on trade‐offs can open the way to more complete consideration of the variety of positive and negative effects associated with conservation initiatives. In analyzing and working through conservation trade‐offs, however, it is important to embrace the complexities inherent in the social context of conservation. In particular, it is important to recognize that the consequences of conservation activities are experienced, perceived, and understood differently from different perspectives, and that these perspectives are embedded in social systems and preexisting power relations. We illustrate the role of trade‐offs in conservation and the complexities involved in understanding them with recent debates surrounding REDD (Reducing Emissions from Deforestation and Degradation), a global conservation policy designed to create incentives to reduce tropical deforestation. Often portrayed in terms of the multiple benefits it may provide: poverty alleviation, biodiversity conservation, and climate‐change mitigation; REDD may involve substantial trade‐offs. The gains of REDD may be associated with a reduction in incentives for industrialized countries to decrease carbon emissions; relocation of deforestation to places unaffected by REDD; increased inequality in places where people who make their livelihood from forests have insecure land tenure; loss of biological and cultural diversity that does not directly align with REDD measurement schemes; and erosion of community‐based means of protecting forests. We believe it is important to acknowledge the potential trade‐offs involved in conservation initiatives such as REDD and to examine these trade‐offs in an open and integrative way that includes a variety of tools, methods, and points of view.  相似文献   

5.
We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.  相似文献   

6.
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non‐protected forests? We sought to assess the effectiveness of different national forest‐management regimes to safeguard forests outside protected areas. We compared 2000–2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi‐experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest‐management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest‐management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national‐level results. We interpreted our results in the context of the broader literature on decentralized, community‐based natural resource management, and our findings emphasize that the type and quality of community‐based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross‐national results are consistent with results from site‐ and regional‐scale studies that show forest‐management regimes that ensure stable land tenure and integrate local‐livelihood benefits with forest conservation result in the best forest outcomes.  相似文献   

7.
The government of Indonesia, which presides over 10% of the world's tropical forests, has set ambitious targets to cut its high deforestation rates through an REDD+ scheme (Reducing Emissions from Deforestation and forest Degradation). This will require strong law enforcement to succeed. Yet, strategies that have accomplished this are rare and, along with past failures, tend not to be documented. We evaluated a multistakeholder approach that seeks to tackle illegal logging in the carbon‐rich province of Aceh, Sumatra. From 2008 to 2009, Fauna & Flora International established and supported a community‐based informant network for the 738,000 ha Ulu Masen ecosystem. The network reported 190 forest offenses to local law enforcement agencies, which responded with 86 field operations that confiscated illicit vehicles, equipment, and timber, and arrested 138 illegal logging suspects. From 45 cases subsequently monitored, 64.4% proceeded to court, from which 90.0% of defendants received a prison sentence or a verbal warning for a first offense. Spatial analyses of illegal logging and timber storage incidents predicted that illegal activities would be more effectively deterred by law enforcement operations that targeted the storage sites. Although numerous clusters of incidents were identified, they were still widespread reflecting the ubiquity of illegal activities. The multistakeholder results were promising, but illegal logging still persisted at apparently similar levels at the project's end, indicating that efforts need to be further strengthened. Nevertheless, several actions contributed to the law enforcement achievements: strong political will; strong stakeholder support; and funding that could be promptly accessed. These factors are highlighted as prerequisites for achieving Indonesia's ambitious REDD+ goals. Rompiendo el Círculo Vicioso de la Tala Ilegal en Indonesia  相似文献   

8.
Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza‐Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land‐use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon‐dense (domed pole forest) areas. New carbon‐based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development.  相似文献   

9.
Abstract: The recent advent of carbon crediting has led to a rapid rise in biosequestration projects that seek to remove carbon from the atmosphere through afforestation and forest rehabilitation. Such projects also present an important potential opportunity to reverse biodiversity losses resulting from deforestation and forest degradation, but the biodiversity benefits of different forms of biosequestration have not been considered adequately. We captured birds in mist nets to examine the effects of rehabilitation of logged forest on birds in Sabah, Borneo, and to test the hypothesis that rehabilitation restores avian assemblages within regenerating forest to a condition closer to that seen in unlogged forest. Species richness and diversity were similar in unlogged and rehabilitated forest, but significantly lower in naturally regenerating forest. Rehabilitation resulted in a relatively rapid recovery of populations of insectivores within logged forest, especially those species that forage by sallying, but had a marked adverse effect on frugivores and possibly reduced the overall abundance of birds within regenerating forest. In view of these results, we advocate increased management for heterogeneity within rehabilitated forests, but we strongly urge an increased role for forest rehabilitation in the design and implementation of a biodiversity‐friendly carbon‐offsetting market.  相似文献   

10.
Biodiversity offsets are intended to achieve no net loss of biodiversity due to economic and human development. A variety of biodiversity components are addressed by offset policies. It is required that loss of protected species due to development be offset under the EU Habitats and Birds Directives in Europe. We call this type of offset a species‐equality offset because the offset pertains to the same species affected by the development project. Whether species equality can be achieved by offset design is unknown. We addressed this gap by reviewing derogation files (i.e., specific files that describe mitigation measures to ensure no net loss under the EU Habitats and Birds Directives) from 85 development projects in France (2009–2010). We collected information on type of effect (reversible vs. irreversible) and characteristics of affected and offset sites (i.e., types of species, total area). We analyzed how the type of effect and the affected‐site characteristics influenced the occurrence of offset measures. The proportion of species targeted by offset measures (i.e., offset species) increased with the irreversibility of the effect of development and the conservation status of the species affected by development (i.e., affected species). Not all effects on endangered species (International Union for Conservation of Nature Red List) were offset; on average, 82% of affected species would be offset. Twenty‐six percent of species of least concern were offset species. Thirty‐five percent of development projects considered all affected species in their offset measures. Species richness was much lower in offset sites than in developed sites even after offset proposals. For developed areas where species richness was relatively high before development, species richness at offset sites was 5–10 times lower. The species‐equality principle appears to have been applied only partially in offset policies, as in the EU directives. We suggest the application of this principle through offsets is highly important for the long‐term conservation of biodiversity in Europe. Compensaciones y Conservación de las Especies de las Directivas de Hábitats y Aves de la UE  相似文献   

11.
Abstract: Over the past 50 years, human agents of deforestation have changed in ways that have potentially important implications for conservation efforts. We characterized these changes through a meta‐analysis of case studies of land‐cover change in the tropics. From the 1960s to the 1980s, small‐scale farmers, with state assistance, deforested large areas of tropical forest in Southeast Asia and Latin America. As globalization and urbanization increased during the 1980s, the agents of deforestation changed in two important parts of the tropical biome, the lowland rainforests in Brazil and Indonesia. Well‐capitalized ranchers, farmers, and loggers producing for consumers in distant markets became more prominent in these places and this globalization weakened the historically strong relationship between local population growth and forest cover. At the same time, forests have begun to regrow in some tropical uplands. These changing circumstances, we believe, suggest two new and differing strategies for biodiversity conservation in the tropics, one focused on conserving uplands and the other on promoting environmental stewardship in lowlands and other areas conducive to industrial agriculture.  相似文献   

12.
Forest reference levels (FRLs) provide a benchmark for assessing reduced emissions from deforestation and forest degradation (REDD+), and they are central to demonstrate additionality of REDD+. Attaining realistic FRLs, however, is challenging, especially in complex mosaic landscapes. We established FRLs in northern Laos for different reference periods and tested them against actual carbon stock changes. Annual time series of Landsat satellite images were used to capture the subtle changes in carbon stocks in complex landscapes characterized by shifting cultivation. We found that FRLs differ considerably depending on the reference period chosen. Abrupt land-use changes occurred when hybrid maize replaced traditional shifting cultivation and forests, and this invalidated carbon stock trends that would have been predicted had the FRL been projected into the future. We conclude that demonstrating additionality of REDD+ in fast developing areas is difficult and that payment systems rewarding potential emission reductions against hypothetical extrapolation of FRLs are unlikely to be a cost-effective strategy.  相似文献   

13.
Effects of Coffee Management on Deforestation Rates and Forest Integrity   总被引:1,自引:0,他引:1  
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest‐agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973–2010) across elevations in 2 forest‐agriculture mosaic landscapes (1100 km2 around Bonga and 3000 km2 in Goma‐Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee‐growing elevations compared with at higher elevations (?10/20% vs. ?40/50% comparing relative rates at 1800 m asl and 2300–2500 m asl, respectively). Within the coffee‐growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest‐specialist species. Even if the presence of coffee slows down the conversion of forest to annual‐crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. Efectos de la Administración Cafetalera sobre las Tasas de Deforestación y la Integridad de los Bosques  相似文献   

14.
Abstract: There are few empirical data, particularly collected simultaneously from multiple sites, on extinctions resulting from human‐driven land‐use change. Southeast Asia has the highest deforestation rate in the world, but the resulting losses of biological diversity remain poorly documented. Between November 2006 and March 2008, we conducted bird surveys on six landbridge islands in Malaysia and Indonesia. These islands were surveyed previously for birds in the early 1900s, when they were extensively forested. Our bird inventories of the islands were nearly complete, as indicated by sampling saturation curves and nonparametric true richness estimators. From zero (Pulau Malawali and Pulau Mantanani) to 15 (Pulau Bintan) diurnal resident landbird species were apparently extirpated since the early 1900s. Adding comparable but published extinction data from Singapore to our regression analyses, we found there were proportionally fewer forest bird extinctions in areas with greater remaining forest cover. Nevertheless, the statistical evidence to support this relationship was weak, owing to our unavoidably small sample size. Bird species that are restricted to the Indomalayan region, lay few eggs, are heavier, and occupy a narrower habitat breadth, were most vulnerable to extinction on Pulau Bintan. This was the only island where sufficient data existed to analyze the correlates of extinction. Forest preservation and restoration are needed on these islands to conserve the remaining forest avifauna. Our study of landbridge islands indicates that deforestation may increasingly threaten Southeast Asian biodiversity.  相似文献   

15.
Although deforestation and forest degradation have long been considered the most significant threats to tropical biodiversity, across Southeast Asia (Northeast India, Indochina, Sundaland, Philippines) substantial areas of natural habitat have few wild animals (>1 kg), bar a few hunting‐tolerant species. To document hunting impacts on vertebrate populations regionally, we conducted an extensive literature review, including papers in local journals and reports of governmental and nongovernmental agencies. Evidence from multiple sites indicated animal populations declined precipitously across the region since approximately 1980, and many species are now extirpated from substantial portions of their former ranges. Hunting is by far the greatest immediate threat to the survival of most of the region's endangered vertebrates. Causes of recent overhunting include improved access to forests and markets, improved hunting technology, and escalating demand for wild meat, wildlife‐derived medicinal products, and wild animals as pets. Although hunters often take common species, such as pigs or rats, for their own consumption, they take rarer species opportunistically and sell surplus meat and commercially valuable products. There is also widespread targeted hunting of high‐value species. Consequently, as currently practiced, hunting cannot be considered sustainable anywhere in the region, and in most places enforcement of protected‐area and protected‐species legislation is weak. The international community's focus on cross‐border trade fails to address overexploitation of wildlife because hunting and the sale of wild meat is largely a local issue and most of the harvest is consumed in villages, rural towns, and nearby cities. In addition to improved enforcement, efforts to engage hunters and manage wildlife populations through sustainable hunting practices are urgently needed. Unless there is a step change in efforts to reduce wildlife exploitation to sustainable levels, the region will likely lose most of its iconic species, and many others besides, within the next few years.  相似文献   

16.
There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self‐organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1–59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species’ origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal‐dispersed seeds were from near‐basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1–25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near‐basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old‐growth forest is crucially important for sustaining tropical biodiversity.  相似文献   

17.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

18.
Abstract: Conservation efforts at local, regional, and global scales often focus on threatened species despite recent calls to adopt more equitable and potentially more economically rational approaches. Critics contend that conservation planning centered only on threatened species fails to deliver cost‐efficient conservation outcomes. We explored how planning to preserve threatened mammal species would influence the efficiency and effectiveness of conservation investments in East Kalimantan, Indonesia. We found that the explicit protection of threatened species delivered cost‐efficient outcomes in this situation, afforded adequate protection to over 90% of those species not yet considered endangered, and contributed to the partial protection of the remainder. We used Marxan, a conservation planning tool, to determine the frequency that planning units are selected in efficient reserve systems and assessed the relative risk of deforestation of each planning unit. Our methods allowed us to identify areas of the region that require the most urgent conservation action.  相似文献   

19.
Abstract: Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species–host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant‐feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971–1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3–10.6 monophages per plant species. I calculated that 213,830–547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.  相似文献   

20.
We present a conservation index based upon the interaction of the size of terrestrial protected areas, remaining forest habitat, deforestation rates, and biological richness to identify conservation potentials, threats, and strategies for 23 Indo-Pacific countries. This conservation potential/threat index shows that four of the largest and most species-rich countries—China, Indonesia, India, and Thailand—contain 82% of the region's large reserves (more than 1000 km2) and 86% of the region's area designated for protection. The skewed regional distribution and small number of large reserves per country call for the expansion of existing protected areas and, where possible the establishment of new parks and transfrontier reserves. The index indicates high potential for conservation efforts in Papua New Guinea, Laos, Myanmar, New Caledonia, Vanuatu, and the Solomon Islands, which have a high percentage of remaining forested habitats. high species richness, or endemism, but which lack comprehensive protected area systems. The index also predicts that if current rates of deforestation continue, only Brunei, Bhutan, Indonesia, Taiwan, and Malaysia will have adequate proportions of their respective land areas under some form of protection while still maintaining a minimal percentage (20% or more) of forested habitat outside reserves. Based on the regional analysis, we identify priority countries for investment in biodiversity conservation, and we evaluate funding responses earmarked for those countries. We then show how the index can be adapted to different geographical scales using examples from Indonesia, Malaysia, and the Philippines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号