首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锰氧化物改性硅藻土对水中Cd(Ⅱ)的吸附性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以硅藻土精土为基体,用锰氧化物作为改性剂制备了改性硅藻土,采用SEM、FT-IR、XRD、比表面积仪对锰氧化物改性的硅藻土进行表征。通过静态吸附试验考查了吸附剂用量、溶液初始浓度、反应温度、溶液初始pH、反应时间等因素对改性硅藻土吸附模拟废水中Cd(Ⅱ)的影响。结果表明:环境温度为25℃,溶液pH为4,投加量为5 g/L时,改性硅藻土对4 mg/L的Cd(Ⅱ)吸附效果最好,去除率可达到97.5%以上,处理后的废水中ρ(Cd(Ⅱ))<0.1 mg/L,低于GB 8978—1996《污水综合排放标准》中总镉的排放标准。  相似文献   

2.
以原水中常见的铜绿微囊藻为研究对象,研究了联合硅藻土与聚合氯化铝(PAC)强化混凝去除铜绿微囊藻的效果.考察了PAC和硅藻土的投加量、溶液pH值、天然有机物腐植酸(HA)对藻和浊度去除的影响,并用zeta电位分析方法对混凝剂的静电中和能力进行表征.结果表明:硅藻土具有良好的助凝作用,投加其有助于改善絮体的沉降性能,提高铜绿微囊藻的混凝去除效果,PAC为6mg/L,pH值为7~8,硅藻土投加量为30mg/L时,叶绿素a(Chl-a)去除率可达96%,剩余浊度低于0.9NTU.HA存在会明显抑制铜绿微囊藻的混凝去除,当HA浓度大于1.0mg/L时,Chl-a去除率大幅度下降同时剩余浊度明显上升,硅藻土的投加可以在一定程度上缓解负面作用.  相似文献   

3.
以原水中常见的铜绿微囊藻为研究对象,研究了联合硅藻土与聚合氯化铝(PAC)强化混凝去除铜绿微囊藻的效果.考察了PAC和硅藻土的投加量、溶液pH值、天然有机物腐植酸(HA)对藻和浊度去除的影响,并用zeta电位分析方法对混凝剂的静电中和能力进行表征.结果表明:硅藻土具有良好的助凝作用,投加其有助于改善絮体的沉降性能,提高铜绿微囊藻的混凝去除效果,PAC为6mg/L,pH值为7~8,硅藻土投加量为30mg/L时,叶绿素a(Chl-a)去除率可达96%,剩余浊度低于0.9NTU. HA存在会明显抑制铜绿微囊藻的混凝去除,当HA浓度大于1.0mg/L时, Chl-a去除率大幅度下降同时剩余浊度明显上升,硅藻土的投加可以在一定程度上缓解负面作用.  相似文献   

4.
硅藻土由于其具有独特的表面结构和良好的吸附性能。将改性后的硅藻土用于酒精废水深度处理进行吸附试验,可知当硅藻土投加量为30mg/L时,能使酒精废水经处理后p(CODCr)稳定达到100mg/L以下。  相似文献   

5.
文章以模拟初期雨水为研究对象,采用改性硅藻土净化处理,并优化了改性硅藻土除磷的工艺条件;利用石英粉和底泥模拟初期雨水浊度,研究了浊度对改性硅藻土除磷的影响。结果表明:混凝搅拌速率为500 r/min,时间为1 min,沉淀时间为50 min,改性硅藻土投加量为75 mg/L时,为模拟初期雨水中磷的最佳去除条件。采用石英粉和含磷底泥模拟初期雨水浊度,保持总磷浓度和改性硅藻土投加量不变,总磷去除率均随着浊度的增加而提高;然而,当石英粉模拟初期雨水浊度达到150 NTU后,总磷去除率则随浊度的增大而趋于下降,底泥模拟初期雨水浊度达到400 NTU后,总磷、溶解性总磷的去除率均呈下降趋势;2种模拟初期雨水浊度的物质对改性硅藻土除磷的影响趋势大致相同。底泥模拟初期雨水浊度较接近自然水体,且总磷去除率较高,得出在保障处理出水水质相同的情况下,在一定浊度范围内,随着浊度的增大,硅藻土投加量反而减小,进一步得出各浊度范围内的最优投加量,为初期雨水净化处理提供技术参数。  相似文献   

6.
硅藻土具有空隙率高、比表面积大、比重小、吸附性强等优良特性,使之在污水处理领域的应用越来越广泛。本研究对硅藻土进行焙烧改性,并用来处理垃圾渗滤液。实验得出硅藻土经过焙烧改性后,对垃圾渗滤液的处理效果有所提高,其最佳焙烧温度为400℃,最佳投加量为2 g,最佳pH值为5.5,最佳搅拌时间为30min,对COD去除率为16.9%,但去除效果仍有待于提高,建议结合多种改性方式以进一步提高硅藻土的水处理能力。  相似文献   

7.
分流制排水系统雨污混接严重所造成的放江污染是河道黑臭的主要原因之一。对此,以A1/O1/A2/O2工艺和粉体强化技术为基础,研发了1款一体化生物硅藻土反应器,以水质波动较大的雨水泵站截流污水为原水,探索工艺参数对污水中污染物去除效果的影响,以及枯水期污水与丰水期污水处理运行时微生物种群结构的差异性。结果表明:反应器内硅藻土浓度为3 g/L,进行枯水期污水处理时,最佳运行条件为Q=1.5 m3/h,O1池ρ(DO)为1.5~2.5 mg/L,R=50%,R=100%,经处理后出水达到GB 3838—2002《地表水环境质量标准》的地表水质Ⅴ类标准;进行丰水期污水处理时,最佳运行条件是Q=1.0 m3/h,O1池ρ(DO)为2.5~3.5 mg/L,R=200%,R=100%,PAC投加量为23 mg/L,A2池碳源投加量折合ρ(COD)为60 mg/L,经处理后出水达到浙江省DB 33/2169—2018《城镇污水处理厂主要水污染物排放标准》中表2排放标准。高通量测序结果表明,枯水期污水处理运行时,Proteobacteria(59.25%)为优势菌门,Gammaproteobacteria(31.57%)为优势菌纲,反硝化菌属Dechloromona(7.76%)为优势菌属;丰水期污水处理时,Proteobacteria(46.02%)为优势菌门,Bacteroidia(32.71%)为优势菌纲,norank-Saprospiracea(20.65%)为优势菌属。硅藻土发挥了微生物载体及助沉的作用,增加了生物黏性,提高了生化系统内污泥浓度,扩大了反应器的处理范围,对生物硅藻土反应器有良好的应用前景。  相似文献   

8.
碳酸钙改性硅藻土处理电解锌漂洗废水实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
铅锌矿在我国储存量大,电解法生产锌过程中可产生含Zn~(2+)、Pb~(2+)、Cd~(2+)、As5+和Cu~(2+)等重金属离子的漂洗废水。以硅藻土精土为基体,用碳酸钙作为改性剂制备改性硅藻土,对电解锌漂洗废水进行吸附实验研究。结果表明:在反应时间为150 min,碳酸钙改性硅藻土用量为3 g/L,pH为5.46,温度为25℃条件下,对废水进行吸附实验,吸附后废水中的Cu~(2+)和As5+离子浓度低于仪器检测线(0.01 mg/L和0.09 mg/L),Pb~(2+)浓度为0.16 mg/L,吸附后废水中Cu~(2+)、As5+和Pb~(2+)离子浓度均满足GB 25466—2010《铅锌工业污染物排放标准》的排放要求。同时,采用SEM、FTIR、XRD等对碳酸钙改性硅藻土进行表征,进一步探讨了碳酸钙改性硅藻土对重金属的吸附机理。  相似文献   

9.
采用臭氧-移动床生物膜组合工艺深度处理河北省某制革园区综合废水,通过考察臭氧投加量、臭氧接触时间对废水COD、UV254、色度处理效果的影响,确定臭氧最佳投加量为20 mg/L,最佳接触时间为40 min。在臭氧最佳运行条件下,MBBR停留时间为15 h,臭氧-移动床生物膜组合工艺出水COD、氨氮、色度可达GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准,出水COD为41~50 mg/L、氨氮为0.5~0.7 mg/L、色度为10~20。  相似文献   

10.
使用经过预处理的硅藻土做载体,采用溶胶-凝胶法制备硅藻土负载二氧化钛光催化剂,利用XRD和EDS对其进行表征.通过分析光催化反应的主要影响因素,研究了硅藻土负载二氧化钛光催化剂对甲基橙的催化降解效果.结果表明:负载3次,在550℃焙烧2h,制备出的负载型催化剂催化活性较高,催化剂上的TiO2为锐钛矿结构.当催化剂投加量为lg/L,溶液初始浓度为15 mg/L,pH为3,H2O2为2 mmol/L时,对甲基橙的降解效果达到最佳.  相似文献   

11.
采用硅藻土对煤矿生活污水氧化沟出水进行混凝搅拌实验,考察了硅藻土投加量、搅拌时间、搅拌速度对总氮(TN)、总磷(TP)和悬浮物(SS)去除效果的影响。结果表明,在投加量80 mg/L、搅拌速度80 r/min、搅拌时间20 min的条件下,水样沉淀后上清液TN、TP和SS浓度分别为13.23 mg/L、0.47 mg/L和1.92 mg/L,达到GB18918-2002一级A标准,TN、TP和SS去除率分别为27%、83%和88%。  相似文献   

12.
试验采用硅藻土和生物接触氧化组合工艺处理污水处理厂出水,氨氮从10mg/L下降到0.5mg/L以下,去除率70~95%;硅藻土澄清池对总磷的去除率高于95%;且对浊度、色度均有良好的去除效果。  相似文献   

13.
试验采用硅藻土和生物接触氧化组合工艺处理污水处理厂出水,氨氮从10mg/L下降到0.5mg/L以下,去除率70~95%;硅藻土澄清池对总磷的去除率高于95%;且对浊度、色度均有良好的去除效果.  相似文献   

14.
本文以硅藻土为吸附剂,静态处理含铜废水,探讨了硅藻土用量、吸附时间、初始p H值、反应温度和污染物初始浓度对废水处理效果的影响,结果表明:在污染物浓度为60mg/L,硅藻土用量为5 g/L、吸附时间为30 min、p H值为5、温度为25~35℃时,铜离子去除率可达62%。在30℃及p H等于5时,最大吸附量为13.831 mg/g,符合Langmuir方程。  相似文献   

15.
本研究通过模拟反渗透膜生产废水水质,在实验室条件下采用生化与臭氧/生物炭组合工艺处理该含DMF的废水。实验结果显示在模拟废水COD浓度为12500 mg/L的情况下,生化出水COD稳定在2500mg/L左右,COD去除率达到85%左右。含DMF的废水在60℃的条件下,通过投加Na OH至p H=13碱解对含有DMF的废水预处理之后,使混合废水COD下降至6000mg/L左右,生化出水COD在600mg/L以下,去除率高达90%,再通过臭氧/生物炭深度处理去除COD、色度、SS等,最终出水满足污水综合排放标准GB 8978-1996中的一级排放标准。  相似文献   

16.
利用混凝沉淀联用微电解氧化法对煤气化废水进行深度处理。采用聚合硫酸铁和有机高分子絮凝剂进行混凝实验,混凝后出水采用强化微电解法进一步除去有机物和色度等。实验结果表明混凝实验最佳pH值为6.50,聚合硫酸铁和有机高分子絮凝剂投加浓度分别为300 mg/L和1~3 mg/L,混凝沉淀可以使COD由650.0 mg/L降到209.9 mg/L,平均去除率约67.7%;混凝处理后调节pH值为3.05,Poten MEF-1403填料100 g/L、投加H2O2浓度为100 mg/L、反应105 min后,COD可以降到90.9 mg/L,综合去除率达86.0%,色度由400倍降到6倍,去除率达98.5%,UV254去除率为94.3%。混凝沉淀和强化微电解法组合工艺可以有效的应用于煤气化废水的深度处理,经处理后废水主要指标完全可以达到GB 8978-1996《污水综合排放标准》一级排放标准。  相似文献   

17.
以钠基膨润土为原料,CTMAB、CPAM为改性剂制备复合改性膨润土。探讨了最佳制备条件为:CTMAB投加量2 mmol,CPAM投加量0.03 g,原土投加量6 g,搅拌速度200 r/min,改性时间大于1.5 h。FTIR和XRD对复合改性膨润土进行表征,表明CTMAB、CPAM进入膨润土层间,扩大了膨润土的层间距从而提高了吸附性能。在原水浓度191 600 mg/L,改性土投加量2 g,搅拌时间1~3 h,pH值6~8,搅拌速度200~300 r/min,离心速度1 400 r/min,离心时间2 min的工艺条件下,制药废水COD去除率可达70%。吸附动力学研究结果表明准二级动力学模型能很好地描述膨润土复合材料对制药废水的吸附过程。  相似文献   

18.
采用非均相催化臭氧氧化工艺深度处理化工废水二级生化出水,探索负载不同活性组分的活性炭催化剂及该工艺处理化工废水的影响因素。结果表明:当进水COD为85~110 mg/L,臭氧投加量为60 mg/L,催化剂投加量为200 mg/L Cr时,臭氧氧化、ACCA-1、ACCA-2和ACCA-3催化臭氧氧化对出水COD的平均去除率分别为22.46%、32.7%、40.5%和35.7%,3种催化剂均可强化臭氧氧化效果。活性炭催化剂能提高臭氧利用率,叔丁醇对ACCA-2抑制效果最明显。  相似文献   

19.
常温下内循环厌氧反应器的启动研究   总被引:1,自引:0,他引:1  
宋倩  马邕文 《环境工程》2010,28(1):14-16
研究了内循环厌氧反应器(IC反应器)在常温下处理葡萄糖配水的启动特性。结果表明:在运行温度为25~35℃的条件下,反应器经70 d启动完成,且IC反应器具有较好的处理效果,反应器内能形成大量的颗粒污泥。启动完成后,进水COD浓度在3 000 mg/L左右时,COD去除率一直保持在95%以上,出水COD浓度维持在200 mg/L左右。当HRT为5.8 h,容积负荷为11.9 kg/(m3.d)时,出水VFA低于200 mg/L,产气量为33 L/d,反应器运行正常。  相似文献   

20.
通过矿井水微量油处理工艺试验,研究了混凝剂和吸附剂的最佳投加量、PAC和PAM的最佳配比、吸附接触时间等技术参数与矿井水中微量油的去除率之间的关系。实验结果表明:混凝剂PAC与PAM最佳投加量的质量浓度分别是200mg/L和2mg/L;只投加吸附荆颗粒活性碳,微量油的去除率不高,其最佳投加量质量浓度为40mg/L;吸附接触时间对微量油去除率的影响不大;采取混凝、沉淀、过滤、吸附复合工艺,矿井水中微量油的去除率能达到96%,出水清澈,浊度≤2NTU。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号