首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

2.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

3.
Abstract: We explored the impact of forest conversion to agricultural mosaic on anuran, lizard, snake, and turtle assemblages of Neotropical dry forests. Over 2 years, we sampled 6 small watersheds on the west coast of Mexico, 3 conserved and 3 disturbed. The disturbed watersheds were characterized by a mosaic of pastures and cultivated fields (corn, beans, squash) intermingled with patches of different successional stages of dry forest. In each watershed, we conducted 11 diurnal and nocturnal time‐constrained searches in 10 randomly established plots. We considered vulnerability traits of species in relation to habitat modification. Eighteen anuran, 18 lizard, 23 snake, and 3 turtle species were recorded. Thirty‐six species (58%) occurred in both forest conditions, and 14 (22%) and 12 species (19%) occurred only in the conserved and disturbed sites, respectively. Assemblages responded differently to disturbance. Species richness, diversity, and abundance of lizards were higher in disturbed forests. Anuran diversity and species richness were lower in disturbed forest but abundance was similar in both forest conditions. Diversity, richness, and abundance of turtles were lower in disturbed forest. The structure and composition of snake assemblages did not differ between forest conditions. We considered species disturbance sensitive if their abundance was significantly less in disturbed areas. Four anuran (22%), 2 lizard (11%), and 3 turtle (100%) species were sensitive to disturbance. No snake species was sensitive. The decline in abundance of disturbance‐sensitive species was associated with the reduction of forest canopy cover, woody stem cover, roots, and litter‐layer ground cover. Anuran species with small body size and direct embryonic development were especially sensitive to forest disturbance. An important goal for the conservation of herpetofauna should be the determination of species traits associated with extinction or persistence in agricultural mosaics.  相似文献   

4.
Increasing the density of natural reserves in the forest landscape may provide conservation benefits for biodiversity within and beyond reserve borders. We used 2 French data sets on saproxylic beetles and landscape cover of forest reserves (LCFR) to test this hypothesis: national standardized data derived from 252 assessment plots in managed and reserve stands in 9 lowland and 5 highland forests and data from the lowland Rambouillet forest, a forested landscape where a pioneer conservation policy led to creation of a dense network of reserves. Abundance of rare and common saproxylic species and total saproxylic species richness were higher in forest reserves than in adjacent managed stands only in highland forests. In the lowland regional case study, as LCFR increased total species richness and common species abundance in reserves increased. In this case study, when there were two or more reserve patches, rare species abundance inside reserves was higher and common species richness in managed stands was higher than when there was a single large reserve. Spillover and habitat amount affected ecological processes underlying these landscape reserve effects. When LCFR positively affected species richness and abundance in reserves or managed stands, >12‐20% reserve cover led to the highest species diversity and abundance. This result is consistent with the target of 17% forested land area in reserves set at the Nagoya biodiversity summit in 2010. Therefore, to preserve biodiversity we recommend at least doubling the current proportion of forest reserves in European forested landscapes.  相似文献   

5.
The conservation implications of large‐scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free‐standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free‐standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind‐dispersed seeds. Connections between the patchy spatial distribution of free‐standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free‐standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow‐growing mature‐phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest‐area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical  相似文献   

6.
Abstract: Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land‐cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American Breeding Bird Survey data to examine land‐cover change and its associations with diversity of birds with principally terrestrial life cycles (landbirds) in the conterminous United States. We used mixed‐effects models and model selection to rank associations by ecoregion. Land cover in 3.22% of the area considered in our analyses changed from 1992 to 2001, and changes in species richness and abundance of birds were strongly associated with land‐cover changes. Changes in species richness and abundance were primarily associated with changes in nondominant types of land cover, yet in many ecoregions different types of land cover were associated with species richness than were associated with abundance. Conversion of natural land cover to anthropogenic land cover was more strongly associated with changes in bird species richness and abundance than persistence of natural land cover in nearly all ecoregions and different covariates were most strongly associated with species richness than with abundance in 11 of 17 ecoregions. Loss of grassland and shrubland affected bird species richness and abundance in forested ecoregions. Loss of wetland was associated with bird abundance in forested ecoregions. Our findings highlight the value of understanding changes in nondominant land cover types and their association with bird diversity in the United States.  相似文献   

7.
Habitat fragmentation affects species distribution and abundance, and drives extinctions. Escalated tropical deforestation and fragmentation have confined many species populations to habitat remnants. How worthwhile is it to invest scarce resources in conserving habitat remnants within densely settled production landscapes? Are these fragments fated to lose species anyway? If not, do other ecological, anthropogenic, and species‐related factors mitigate the effect of fragmentation and offer conservation opportunities? We evaluated, using generalized linear models in an information‐theoretic framework, the effect of local‐ and landscape‐scale factors on the richness, abundance, distribution, and local extinction of 6 primate species in 42 lowland tropical rainforest fragments of the Upper Brahmaputra Valley, northeastern India. On average, the forest fragments lost at least one species in the last 30 years but retained half their original species complement. Species richness declined as proportion of habitat lost increased but was not significantly affected by fragment size and isolation. The occurrence of western hoolock gibbon (Hoolock hoolock) and capped langur (Trachypithecus pileatus) in fragments was inversely related to their isolation and loss of habitat, respectively. Fragment area determined stump‐tailed (Macaca arctoides) and northern pig‐tailed macaque occurrence (Macaca leonina). Assamese macaque (Macaca assamensis) distribution was affected negatively by illegal tree felling, and rhesus macaque (Macaca mulatta) abundance increased as habitat heterogeneity increased. Primate extinction in a fragment was primarily governed by the extent of divergence in its food tree species richness from that in contiguous forests. We suggest the conservation value of these fragments is high because collectively they retained the entire original species pool and individually retained half of it, even a century after fragmentation. Given the extensive habitat and species loss, however, these fragments urgently require protection and active ecological restoration to sustain this rich primate assemblage. Correlaciones Locales y de Paisaje de la Distribución y Persistencia de Primates en los Bosques Lluviosos Remanentes en el Valle del Alto Brahmaputra, Noreste de India  相似文献   

8.
Land‐use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species occurrence at 140 study sites in the southern Appalachian Mountains (North Carolina, U.S.A.) that varied with respect to building density and elevation. We used occupancy models to determine 36 bird species’ associations with building density, forest canopy cover, average daily mean temperature, and an interaction between building density and mean temperature. Responses varied with habitat requirement, breeding range, and migration distance. Building density and mean temperature were both included in the top occupancy models for 19 of 36 species and a building density by temperature interaction was included in models for 8 bird species. As exurban development expands in the southern Appalachians, interior forest species and Neotropical migrants are likely to decline, but shrubland or edge species are not likely to benefit. Overall, effects of building density were greater than those of forest canopy cover. Exurban development had a greater effect on birds at high elevations due to a greater abundance of sensitive forest‐interior species and Neotropical migrants. A warming climate may exacerbate these negative effects. Efectos del Desarrollo Exurbano y de la Temperatura sobre Especies de Aves en las Apalaches del Sur  相似文献   

9.
Forest die‐off around the world is expected to increase in coming decades as temperature increases due to climate change. Forest die‐off will likely affect understory plant communities, which have substantial influence on regional biological diversity, ecosystem function, and land–atmosphere interactions, but how die‐off alters these plant communities is largely unknown. We examined changes in understory plant communities following a widespread, drought‐induced die‐off of trembling aspen (Populus tremuloides) in the western United States. We assessed shrub and herbaceous cover and volume in quadrats in 55 plots located across a wide range of levels of aspen mortality. We measured species richness and composition of herbaceous plant communities by recording species presence and absence in 12 sets of paired (1 healthy, 1 dying) aspen plots. Although understory composition in healthy and dying stands was heterogeneous across the landscape, shrub abundance, cover, and volume were higher and abundance of herbaceous species, cover, and volume were lower in dying aspen stands. Shrub cover and volume increased from 2009 to 2011 in dying stands, which suggests that shrub growth and expansion is ongoing. Species richness of herbs declined by 23% in dying stands. Composition of herbs differed significantly between dying and healthy stands. Richness of non‐native species did not differ between stand types. The understory community in dying aspen stands was not similar to other shrub‐dominated plant communities in the region and may constitute a novel community. Our results suggest that changes in understory plant communities as forests die off could be a significant indirect effect of climate change on biological diversity and forest communities. Efectos de la Mortalidad Extensiva de Álamos Inducida por Sequía sobre Plantas del Sotobosque  相似文献   

10.
Fish Responses to Experimental Fragmentation of Seagrass Habitat   总被引:2,自引:0,他引:2  
Abstract: Understanding the consequences of habitat fragmentation has come mostly from comparisons of patchy and continuous habitats. Because fragmentation is a process, it is most accurately studied by actively fragmenting large patches into multiple smaller patches. We fragmented artificial seagrass habitats and evaluated the impacts of fragmentation on fish abundance and species richness over time (1 day, 1 week, 1 month). Fish assemblages were compared among 4 treatments: control (single, continuous 9‐m2 patches); fragmented (single, continuous 9‐m2 patches fragmented to 4 discrete 1‐m2 patches); prefragmented/patchy (4 discrete 1‐m2 patches with the same arrangement as fragmented); and disturbance control (fragmented then immediately restored to continuous 9‐m2 patches). Patchy seagrass had lower species richness than actively fragmented seagrass (up to 39% fewer species after 1 week), but species richness in fragmented treatments was similar to controls. Total fish abundance did not vary among treatments and therefore was unaffected by fragmentation, patchiness, or disturbance caused during fragmentation. Patterns in species richness and abundance were consistent 1 day, 1 week, and 1 month after fragmentation. The expected decrease in fish abundance from reduced total seagrass area in fragmented and patchy seagrass appeared to be offset by greater fish density per unit area of seagrass. If fish prefer to live at edges, then the effects of seagrass habitat loss on fish abundance may have been offset by the increase (25%) in seagrass perimeter in fragmented and patchy treatments. Possibly there is some threshold of seagrass patch connectivity below which fish abundances cannot be maintained. The immediate responses of fish to experimental habitat fragmentation provided insights beyond those possible from comparisons of continuous and historically patchy habitat.  相似文献   

11.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

12.
In the Brazilian Amazon, private land accounts for the majority of remaining native vegetation. Understanding how land‐use change affects the composition and distribution of biodiversity in farmlands is critical for improving conservation strategies in the face of rapid agricultural expansion. Working across an area exceeding 3 million ha in the southwestern state of Rondônia, we assessed how the extent and configuration of remnant forest in replicate 10,000‐ha landscapes has affected the occurrence of a suite of Amazonian mammals and birds. In each of 31 landscapes, we used field sampling and semistructured interviews with landowners to determine the presence of 28 large and medium sized mammals and birds, as well as a further 7 understory birds. We then combined results of field surveys and interviews with a probabilistic model of deforestation. We found strong evidence for a threshold response of sampled biodiversity to landscape level forest cover; landscapes with <30–40% forest cover hosted markedly fewer species. Results from field surveys and interviews yielded similar thresholds. These results imply that in partially deforested landscapes many species are susceptible to extirpation following relatively small additional reductions in forest area. In the model of deforestation by 2030 the number of 10,000‐ha landscapes under a conservative threshold of 43% forest cover almost doubled, such that only 22% of landscapes would likely to be able to sustain at least 75% of the 35 focal species we sampled. Brazilian law requires rural property owners in the Amazon to retain 80% forest cover, although this is rarely achieved. Prioritizing efforts to ensure that entire landscapes, rather than individual farms, retain at least 50% forest cover may help safeguard native biodiversity in private forest reserves in the Amazon. Umbrales de Pérdida de Especies en los Paisajes Fronterizos de Deforestación en el Amazonas Ochoa‐Quintero  相似文献   

13.
Abstract:  Few researchers have investigated the synergistic effects of tropical forest fragmentation and disturbance on species persistence and abundance. We examined effects of both forest-patch metrics and forest disturbance in determining richness and abundance of midsized to large-bodied mammal species in a highly fragmented Amazonian forest landscape. Twenty-one forest fragments, ranging from 2 to 14,480 ha, and two continuous forest sites were sampled based on sightings, tracks, line-transect censuses, armadillo burrow censuses, and camera trapping. Patch occupancy of 37 species recorded ranged from 4% to all forest sites surveyed. Forest fragment size was the strongest predictor of species persistence, explaining 90% of the variation in species richness. Information-theoretic analysis confirmed that fragment area was the most important explanatory variable for the overall species richness and abundance of mammal species, followed by surface fires, which affected the abundance of seven species. Large mammal species were typically absent from fragments <100 ha, whereas some ubiquitous species were favored by fragmentation, exhibiting hyperabundance in small patches. Our findings highlight the importance of large (>10,000 ha), relatively undisturbed forest patches to maximize persistence and maintain baseline abundances of Neotropical forest mammal species.  相似文献   

14.
Many migratory animals are experiencing rapid population declines, but migration data with the geographic scope and resolution to quantify the complex network of movements between breeding and nonbreeding regions are often lacking. Determining the most frequently used migration routes and nonbreeding regions for a species is critical for understanding population dynamics and making effective conservation decisions. We tracked the migration of individual Wood Thrushes (Hylocichla mustelina) (n = 102) from across their range with light‐level geolocators and, for the first time, quantified migration routes and wintering regions for distinct breeding populations. We identified regional and species‐level migratory connectivity networks for this declining songbird by combining our tracking results with range‐wide breeding abundance estimates and forest cover data. More than 50% of the species occupied the eastern wintering range (Honduras to Costa Rica), a region that includes only one‐third of all wintering habitat and that is undergoing intensive deforestation. We estimated that half of all Wood Thrushes in North America migrate south through Florida in fall, whereas in spring approximately 73% funnel northward through a narrow span along the central U.S. Gulf Coast (88–93°W). Identifying migratory networks is a critical step for conservation of songbirds and we demonstrated with Wood Thrushes how it can highlight conservation hotspots for regional populations and species as a whole. Conectividad de Sitios de Reproducción, Invierno y Migración del Zorzal con Base en Rastreo de Cobertura Amplia  相似文献   

15.
Abstract: Habitat fragmentation is a severe threat to tropical biotas, but its long‐term effects are poorly understood. We evaluated longer‐term changes in the abundance of larger (>1 kg) mammals in fragmented and intact rainforest and in riparian “corridors” in tropical Queensland, with data from 190 spotlighting surveys conducted in 1986–1987 and 2006–2007. In 1986–1987 when most fragments were already 20–50 years old, mammal assemblages differed markedly between fragmented and intact forest. Most vulnerable were lemuroid ringtail possums (Hemibelideus lemuroides), followed by Lumholtz's tree‐kangaroos (Dendrolagus lumholtzi) and Herbert River ringtail possums (Pseudocheirus herbertensis). Further changes were evident 20 years later. Mammal species richness fell significantly in fragments, and the abundances of 4 species, coppery brushtail possums (Trichosurus vulpecula johnstoni), green ringtail possums (Pseudochirops archeri), red‐legged pademelons (Thylogale stigmatica), and tree‐kangaroos, declined significantly. The most surprising finding was that the lemuroid ringtail, a strict rainforest specialist, apparently recolonized one fragment, despite a 99.98% decrease in abundance in fragments and corridors. A combination of factors, including long‐term fragmentation effects, shifts in the surrounding matrix vegetation, and recurring cyclone disturbances, appear to underlie these dynamic changes in mammal assemblages.  相似文献   

16.
Intensification of food production in tropical landscapes in the absence of land‐use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle‐production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate‐intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non‐native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70–90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate‐intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low‐intensity production systems, in which forest structure and extent were intact, intermediate‐intensity silvopastoral systems supported significantly fewer forest‐restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate‐intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest‐restricted species in this agricultural frontier. Compromisos entre la Producción de Ganado y la Conservación de Aves en una Frontera Agrícola del Gran Chaco de Argentina  相似文献   

17.
Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta‐analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). Meta‐Análisis de los Efectos de la Fragmentación del Bosque sobre las Interacciones Interespecíficas  相似文献   

18.
There is profound interest in knowing the degree to which China's institutions are capable of protecting its natural forests and biodiversity in the face of economic and political change. China's 2 most important forest‐protection policies are its National Forest Protection Program (NFPP) and its national‐level nature reserves (NNRs). The NFPP was implemented in 2000 in response to deforestation‐caused flooding. We undertook the first national, quantitative assessment of the NFPP and NNRs to examine whether the NFPP achieved its deforestation‐reduction target and whether the NNRs deter deforestation altogether. We used MODIS data to estimate forest cover and loss across mainland China (2000–2010). We also assembled the first‐ever polygon dataset for China's forested NNRs (n = 237, 74,030 km2 in 2000) and used both conventional and covariate‐matching approaches to compare deforestation rates inside and outside NNRs (2000–2010). In 2000, 1.765 million km2 or 18.7% of mainland China was forested (12.3% with canopy cover of ≥70%)) or woodland (6.4% with canopy cover <70% and tree plus shrub cover ≥40%). By 2010, 480,203 km2 of forest and woodland had been lost, an annual deforestation rate of 2.7%. Forest‐only loss was 127,473 km2 (1.05% annually). In the NFPP provinces, the forest‐only loss rate was 0.62%, which was 3.3 times lower than in the non‐NFPP provinces. Moreover, the Landsat data suggest that these loss rates are overestimates due to large MODIS pixel size. Thus, China appears to have achieved, and even exceeded, its target of reducing deforestation to 1.1% annually in the NFPP provinces. About two‐thirds of China's NNRs were effective in protecting forest cover (prevented loss 4073 km2 unmatched approach; 3148 km2 matched approach), and within‐NNR deforestation rates were higher in provinces with higher overall deforestation. Our results indicate that China's existing institutions can protect domestic forest cover.  相似文献   

19.
Habitat corridors are important tools for maintaining connectivity in increasingly fragmented landscapes, but generally they have been considered in single‐species approaches. Corridors intended to facilitate the movement of multiple species could increase persistence of entire communities, but at the likely cost of being less efficient for any given species than a corridor intended specifically for that species. There have been few tests of the trade‐offs between single‐ and multispecies corridor approaches. We assessed single‐species and multispecies habitat corridors for 5 threatened mammal species in tropical forests of Borneo. We generated maps of the cost of movement across the landscape for each species based on the species’ local abundance as estimated through hierarchical modeling of camera‐trap data with biophysical and anthropogenic covariates. Elevation influenced local abundance of banded civets (Hemigalus derbyanus) and sun bears (Helarctos malayanus). Increased road density was associated with lower local abundance of Sunda clouded leopards (Neofelis diardi) and higher local abundance of sambar deer (Rusa unicolor). Pig‐tailed macaque (Macaca nemestrina) local abundance was lower in recently logged areas. An all‐species‐combined connectivity scenario with least‐cost paths and 1 km buffers generated total movement costs that were 27% and 23% higher for banded civets and clouded leopards, respectively, than the connectivity scenarios for those species individually. A carnivore multispecies connectivity scenario, however, increased movement cost by 2% for banded civets and clouded leopards. Likewise, an herbivore multispecies scenario provided more effective connectivity than the all‐species‐combined scenario for sambar and macaques. We suggest that multispecies habitat connectivity plans be tailored to groups of ecologically similar, disturbance‐sensitive species to maximize their effectiveness. Evaluación de la Conectividad de Terrenos Multiespecie en una Comunidad Tropical de Mamíferos  相似文献   

20.
Effects of Coffee Management on Deforestation Rates and Forest Integrity   总被引:1,自引:0,他引:1  
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest‐agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973–2010) across elevations in 2 forest‐agriculture mosaic landscapes (1100 km2 around Bonga and 3000 km2 in Goma‐Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee‐growing elevations compared with at higher elevations (?10/20% vs. ?40/50% comparing relative rates at 1800 m asl and 2300–2500 m asl, respectively). Within the coffee‐growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest‐specialist species. Even if the presence of coffee slows down the conversion of forest to annual‐crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. Efectos de la Administración Cafetalera sobre las Tasas de Deforestación y la Integridad de los Bosques  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号