首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native plant species that have lost their mutualist partners may require non‐native pollinators or seed dispersers to maintain reproduction. When natives are highly specialized, however, it appears doubtful that introduced generalists will partner effectively with them. We used visitation observations and pollination treatments (experimental manipulations of pollen transfer) to examine relationships between the introduced, generalist Japanese White‐eye (Zosterops japonicus) and 3 endemic Hawaiian plant species (Clermontia parviflora, C. montis‐loa, and C. hawaiiensis). These plants are characterized by curved, tubular flowers, apparently adapted for pollination by curve‐billed Hawaiian honeycreepers. Z. japonicus were responsible for over 80% of visits to flowers of the small‐flowered C. parviflora and the midsize‐flowered C. montis‐loa. Z. japonicus‐visited flowers set significantly more seed than did bagged flowers. Z. japonicus also demonstrated the potential to act as an occasional Clermontia seed disperser, although ground‐based frugivory by non‐native mammals likely dominates seed dispersal. The large‐flowered C. hawaiiensis received no visitation by any birds during observations. Unmanipulated and bagged C. hawaiiensis flowers set similar numbers of seeds. Direct examination of Z. japonicus and Clermontia morphologies suggests a mismatch between Z. japonicus bill morphology and C. hawaiiensis flower morphology. In combination, our results suggest that Z. japonicus has established an effective pollination relationship with C. parviflora and C. montis‐loa and that the large flowers of C. hawaiiensis preclude effective visitation by Z. japonicus. Remplazo Imperfecto de Especies Nativas por Especies No‐Nativas como Polinizadores de Plantas Endémicas de Hawaii  相似文献   

2.
The extinction of large herbivores, often keystone species, can dramatically modify plant communities and impose key biotic thresholds that may prevent an ecosystem returning to its previous state and threaten native biodiversity. A potentially innovative, yet controversial, landscape‐based long‐term restoration approach is to replace missing plant‐herbivore interactions with non‐native herbivores. Aldabran giant (Aldabrachelys gigantea) and Madagascan radiated (Astrochelys radiata) tortoises, taxonomically and functionally similar to the extinct Mauritian giant tortoises (Cylindraspis spp.), were introduced to Round Island, Mauritius, in 2007 to control the non‐native plants that were threatening persistence of native species. We monitored the response of the plant community to tortoise grazing for 11 months in enclosures before the tortoises were released and, compared the cost of using tortoises as weeders with the cost of using manual labor. At the end of this period, plant biomass; vegetation height and cover; and adult, seedling, flower, and seed abundance were 3–136 times greater in adjacent control plots than in the tortoise enclosures. After their release, the free‐roaming tortoises grazed on most non‐native plants and significantly reduced vegetation cover, height, and seed production, reflecting findings from the enclosure study. The tortoises generally did not eat native species, although they consumed those native species that increased in abundance following the eradication of mammalian herbivores. Our results suggest that introduced non‐native tortoises are a more cost‐effective approach to control non‐native vegetation than manual weeding. Numerous long‐term outcomes (e.g., change in species composition and soil seed bank) are possible following tortoise releases. Monitoring and adaptive management are needed to ensure that the replacement herbivores promote the recovery of native plants. Estudiando el Potencial para Restaurar Ecosistemas Históricos de Forrajeo con Reemplazos Ecológicos de Tortugas Terrestres  相似文献   

3.
Abstract: Non‐native species can cause the loss of biological diversity (i.e., genetic, species, and ecosystem diversity) and threaten the well‐being of humans when they become invasive. In some cases, however, they can also provide conservation benefits. We examined the ways in which non‐native species currently contribute to conservation objectives. These include, for example, providing habitat or food resources to rare species, serving as functional substitutes for extinct taxa, and providing desirable ecosystem functions. We speculate that non‐native species might contribute to achieving conservation goals in the future because they may be more likely than native species to persist and provide ecosystem services in areas where climate and land use are changing rapidly and because they may evolve into new and endemic taxa. The management of non‐native species and their potential integration into conservation plans depends on how conservation goals are set in the future. A fraction of non‐native species will continue to cause biological and economic damage, and substantial uncertainty surrounds the potential future effects of all non‐native species. Nevertheless, we predict the proportion of non‐native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.  相似文献   

4.
5.
Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta‐analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). Meta‐Análisis de los Efectos de la Fragmentación del Bosque sobre las Interacciones Interespecíficas  相似文献   

6.
Non‐native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer‐reviewed literature to evaluate responses of arthropod communities and functional groups to non‐native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty‐two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web‐building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities. Efectos de las Plantas Invasoras sobre los Artrópodos  相似文献   

7.
Non‐native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non‐native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non‐native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non‐native species; help disentangle which aspects of scientific debates about non‐native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio‐economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No‐Nativas  相似文献   

8.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

9.
There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self‐organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1–59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species’ origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal‐dispersed seeds were from near‐basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1–25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near‐basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old‐growth forest is crucially important for sustaining tropical biodiversity.  相似文献   

10.
Abstract: Human land uses surrounding protected areas provide propagules for colonization of these areas by non‐native species, and corridors between protected‐area networks and drainage systems of rivers provide pathways for long‐distance dispersal of non‐native species. Nevertheless, the influence of protected‐area boundaries on colonization of protected areas by invasive non‐native species is unknown. We drew on a spatially explicit data set of more than 27,000 non‐native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non‐native species. The number of records of non‐native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non‐native plants. The number of non‐native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human‐induced disturbance, only the density of major roads outside the protected area significantly increased the number of non‐native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably.  相似文献   

11.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

12.
Abstract: The influence of non‐native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non‐native species may both harm and provide refugia for endangered native species. The invasive non‐native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats[Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non‐native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non‐native species can be used to mitigate the impacts of other non‐native species on native species.  相似文献   

13.
Habitat characteristics mediate predator–prey coexistence in many ecological systems but are seldom considered in species introductions. When economically important introduced predators are stocked despite known negative impacts on native species, understanding the role of refuges, landscape configurations, and community interactions can inform habitat management plans. We measured these factors in basins with introduced trout (Salmonidae) and the Cascades frog (Rana cascadae) to determine, which are responsible for observed patterns of co‐occurrence of this economically important predator and its native prey. Large, vegetated shallows were strongly correlated to co‐occurrence, and R. cascadae larvae occur in shallower water when fish are present, presumably to escape predation. The number of nearby breeding sites of R. cascadae was also correlated to co‐occurrence, but only when the western toad (Anaxyrus boreas) was present. Because A. boreas larvae are unpalatable to fish and resemble R. cascadae, they may provide protection from trout via Batesian mimicry. Although rescue‐effect dispersal from nearby populations may maintain co‐occurrence, within‐lake factors proved more important for predicting co‐occurrence. Learning which factors allow co‐occurrence between economically important introduced species and their native prey enables managers to make better‐informed stocking decisions. Factores que Median la Co‐Ocurrencia de un Pez Introducido con Valor Económico y su Presa, una Rana Nativa  相似文献   

14.
Abstract: The degree to which changes in community composition mediate the probability of colonization and spread of non‐native species is not well understood, especially in animal communities. High species richness may hinder the establishment of non‐native species. Distinguishing between this scenario and cases in which non‐native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce the abundance of native ants and fire ants in four experimental plots. We then observed the reassembly and reestablishment of the ants in these plots for 1 year after treatment. The abundance of fire ants in treated plots did not differ from abundance in control plots 1 year after treatment. Likewise, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants and fire ants to disturbance can be comparable.  相似文献   

15.
A global conservation goal is to understand the pathways through which invasive species are introduced into new regions. Botanic gardens are a pathway for the introduction of invasive non‐native plants, but a quantitative assessment of the risks they pose has not been performed. I analyzed data on the living collections of over 3000 botanic gardens worldwide to quantify the temporal trend in the representation of non‐native species; the relative composition of threatened, ornamental, or invasive non‐native plant species; and the frequency with which botanic gardens implement procedures to address invasive species. While almost all of the world's worst invasive non‐native plants occurred in one or more living collections (99%), less than one‐quarter of red‐listed threatened species were cultivated (23%). Even when cultivated, individual threatened species occurred in few living collections (7.3), while non‐native species were on average grown in 6 times as many botanic gardens (44.3). As a result, a botanic garden could, on average, cultivate four times as many invasive non‐native species (20) as red‐listed threatened species (5). Although the risk posed by a single living collection is small, the probability of invasion increases with the number of botanic gardens within a region. Thus, while both the size of living collections and the proportion of non‐native species cultivated have declined during the 20th century, this reduction in risk is offset by the 10‐fold increase in the number of botanic gardens established worldwide. Unfortunately, botanic gardens rarely implement regional codes of conduct to prevent plant invasions, few have an invasive species policy, and there is limited monitoring of garden escapes. This lack of preparedness is of particular concern given the rapid increase in living collections worldwide since 1950, particularly in South America and Asia, and highlights past patterns of introduction will be a poor guide to determining future invasion risks.  相似文献   

16.
Abstract: We provide a cross‐taxon and historical analysis of what makes tropical forest species vulnerable to extinction. Several traits have been important for species survival in the recent and distant geological past, including seed dormancy and vegetative growth in plants, small body size in mammals, and vagility in insects. For major past catastrophes, such as the five mass extinction events, large range size and vagility or dispersal were key to species survival. Traits that make some species more vulnerable to extinction are consistent across time scales. Terrestrial organisms, particularly animals, are more extinction prone than marine organisms. Plants that persist through dramatic changes often reproduce vegetatively and possess mechanisms of die back. Synergistic interactions between current anthropogenic threats, such as logging, fire, hunting, pests and diseases, and climate change are frequent. Rising temperatures threaten all organisms, perhaps particularly tropical organisms adapted to small temperature ranges and isolated by distance from suitable future climates. Mutualist species and trophic specialists may also be more threatened because of such range‐shift gaps. Phylogenetically specialized groups may be collectively more prone to extinction than generalists. Characterization of tropical forest species’ vulnerability to anthropogenic change is constrained by complex interactions among threats and by both taxonomic and ecological impediments, including gross undersampling of biotas and poor understanding of the spatial patterns of taxa at all scales.  相似文献   

17.
The threatened Marsh Grassbird (Locustella pryeri) first appeared in the salt marsh in east China after the salt marsh was invaded by cordgrass (Spartina alterniflora), a non‐native invasive species. To understand the dependence of non‐native Marsh Grassbird on the non‐native cordgrass, we quantified habitat use, food source, and reproductive success of the Marsh Grassbird at the Chongming Dongtan (CMDT) salt marsh. In the breeding season, we used point counts and radio‐tracking to determine habitat use by Marsh Grassbirds. We analyzed basal food sources of the Marsh Grassbirds by comparing the δ13C isotope signatures of feather and fecal samples of birds with those of local plants. We monitored the nests through the breeding season and determined the breeding success of the Marsh Grassbirds at CMDT. Density of Marsh Grassbirds was higher where cordgrass occurred than in areas of native reed (Phragmites australis) monoculture. The breeding territory of the Marsh Grassbird was composed mainly of cordgrass stands, and nests were built exclusively against cordgrass stems. Cordgrass was the major primary producer at the base of the Marsh Grassbird food chain. Breeding success of the Marsh Grassbird at CMDT was similar to breeding success within its native range. Our results suggest non‐native cordgrass provides essential habitat and food for breeding Marsh Grassbirds at CMDT and that the increase in Marsh Grassbird abundance may reflect the rapid spread of cordgrass in the coastal regions of east China. Our study provides an example of how a primary invader (i.e., cordgrass) can alter an ecosystem and thus facilitate colonization by a second non‐native species. Efectos de Spartina alterniflora Invasora Sobre Locustella pryeri en un Área Donde No Es Nativa  相似文献   

18.
Predation on native fauna by non‐native invasive mammals is widely documented, but effects of predation at the population level are rarely measured. Eradication of invasive mammals from islands has led to recovery of native biota, but the benefits of controlling invasive mammal populations in settings where eradication is not feasible are less understood. We used various combinations of aerially delivered toxic bait and control measures on the ground to reduce abundances of invasive rats (Rattus rattus) to low levels over large areas on mainland New Zealand and then monitored the abundance of invertebrates on replicated treatment sites to compare with abundances on similar nontreatment sites. We also assessed rat diet by examining stomach contents. Abundance of the rats’ most‐consumed invertebrate prey item, the large‐bodied Auckland tree weta (Hemideina thoracica), increased 3‐fold on treatment sites where we maintained rats at <4/ha for approximately 3 years, compared with the nontreatment sites. Auckland tree weta also increased in abundance on sites where rats were controlled with a single aerial‐poisoning operation, but rat abundance subsequently increased on these sites and tree weta abundance then declined. Nevertheless, our data suggest that biennial reduction of rat abundances may be sufficient to allow increases in tree weta populations. Other invertebrates that were consumed less often (cave weta [Rhaphidophoridae], spiders [Araneae], and cockroaches [Blattodea]) showed no systematic changes in abundance following rat control. Our results suggest that the significant threat to recruitment and individual survival that predation by rats poses for tree weta can be mitigated by wide‐scale aerial pest control. Efectos del Control Extensivo Espacial de Ratas Invasoras sobre la Abundancia de Invertebrados Nativos en Bosques de Nueva Zelanda  相似文献   

19.
Loss of key plant–animal interactions (e.g., disturbance, seed dispersal, and herbivory) due to extinctions of large herbivores has diminished ecosystem functioning nearly worldwide. Mitigating for the ecological consequences of large herbivore losses through the use of ecological replacements to fill extinct species’ niches and thereby replicate missing ecological functions has been proposed. It is unknown how different morphologically and ecologically a replacement can be from the extinct species and still provide similar functions. We studied niche equivalency between 2 phenotypes of Galápagos giant tortoises (domed and saddlebacked) that were translocated to Pinta Island in the Galápagos Archipelago as ecological replacements for the extinct saddlebacked giant tortoise (Chelonoidis abingdonii). Thirty‐nine adult, nonreproductive tortoises were introduced to Pinta Island in May 2010, and we observed tortoise resource use in relation to phenotype during the first year following release. Domed tortoises settled in higher, moister elevations than saddlebacked tortoises, which favored lower elevation arid zones. The areas where the tortoises settled are consistent with the ecological conditions each phenotype occupies in its native range. Saddlebacked tortoises selected areas with high densities of the arboreal prickly pear cactus (Opuntia galapageia) and mostly foraged on the cactus, which likely relied on the extinct saddlebacked Pinta tortoise for seed dispersal. In contrast, domed tortoises did not select areas with cactus and therefore would not provide the same seed‐dispersal functions for the cactus as the introduced or the original, now extinct, saddlebacked tortoises. Interchangeability of extant megaherbivores as replacements for extinct forms therefore should be scrutinized given the lack of equivalency we observed in closely related forms of giant tortoises. Our results also demonstrate the value of trial introductions of sterilized individuals to test niche equivalency among candidate analog species. Equivalencia de Tortugas Gigantes de las Galápagos Utilizadas como Especie de Reemplazo Ecológico para Restaurar las Funciones de los Ecosistemas  相似文献   

20.
Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal‐limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate‐suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate‐suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague‐transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. Efectos del Cambio Climático, Especies Invasoras y Enfermedades sobre la Distribución de Cangrejos de Río Europeos Nativos  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号