首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protected areas’ chief conservation objectives are to include species within their boundaries and protect them from negative external pressures. Many protected areas are not achieving these goals, perhaps in part due to land development inside and outside protected areas. We conducted spatial analyses to evaluate the ability of Canadian protected areas to mitigate the effects of nearby land development. We investigated correlations of national patterns of land development in and around protected areas and then examined national patterns of roads, urban area, and croplands in protected areas. We calculated the amount of developed land in protected areas and within 25–100 km of protected‐area borders, the density of roads, and extent of urban and cropland area in protected areas. We constructed logistic‐regression models to test whether development in a protected area was associated with landscape and protected‐area characteristics. Land development was far less extensive inside than outside protected areas. However, several protected areas, particularly small southern areas near small urban centers had substantial development inside their boundaries, and nearly half of protected areas had roads. The cumulative extent of development within 50 km of protected areas was the best predictor of the probability of land development in protected areas. Canadian First Nations, industries, government, and nongovernmental organizations are currently planning an unprecedented number of new protected areas. Careful management of areas beyond protected‐area boundaries may prove critical to meeting their long‐term conservation objectives. Desarrollo de Tierras Dentro y Alrededor de Áreas Protegidas en la Frontera Silvestre  相似文献   

2.
Abstract: Most protected areas are too small to sustain populations of wide‐ranging mammals; thus, identification and conservation of high‐quality habitat for those animals outside parks is often a high priority, particularly for regions where extensive land conversion is occurring. This is the case in the vicinity of Emas National Park, a small protected area in the Brazilian Cerrado. Over the last 40 years the native vegetation surrounding the park has been converted to agriculture, but the region still supports virtually all of the animals native to the area. We determined the effectiveness of scat‐detection dogs in detecting presence of five species of mammals threatened with extinction by habitat loss: maned wolf (Chrysocyon brachyurus), puma (Puma concolor), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), and giant armadillo (Priodontes maximus). The probability of scat detection varied among the five species and among survey quadrats of different size, but was consistent across team, season, and year. The probability of occurrence, determined from the presence of scat, in a randomly selected site within the study area ranged from 0.14 for jaguars, which occur primarily in the forested areas of the park, to 0.91 for maned wolves, the most widely distributed species in our study area. Most occurrences of giant armadillos in the park were in open grasslands, but in the agricultural matrix they tended to occur in riparian woodlands. At least one target species occurred in every survey quadrat, and giant armadillos, jaguars, and maned wolves were more likely to be present in quadrats located inside than outside the park. The effort required for detection of scats was highest for the two felids. We were able to detect the presence for each of five wide‐ranging species inside and outside the park and to assign occurrence probabilities to specific survey sites. Thus, scat dogs provide an effective survey tool for rare species even when accurate detection likelihoods are required. We believe the way we used scat‐detection dogs to determine the presence of species can be applied to the detection of other mammalian species in other ecosystems.  相似文献   

3.
Abstract: Parks are cornerstones of conservation; and non‐native invasive species drive extensive changes to biological diversity in parks. Knowing this, national park staff at Lake Mead National Recreation Area in the southwestern United States had a program in place for early detection of the non‐native, invasive quagga mussel (Dreissena rostriformis bugensis). Upon finding the mussel in January 2007, managers moved quickly to access funding and the best available science to implement a response. Managers considered four options—doing nothing, closing the park, restricting movement on the lakes, and educating and enforcing park visitors—and decided to focus on education and enforcing existing laws. Nonetheless, quagga spread throughout the park and soon began to appear throughout the western United States. I examined why efforts to control the expansion failed and determined the general lessons to be learned from this case. Concentrating human visitation on the lakes through land‐use zoning opened a pathway for invasion, reduced management options, and led to the rapid spread of quagga. To reconcile competing mandates to protect nature and provide recreation, zoning in parks has become a common practice worldwide. It reduces stress on some areas of a park by restricting and thus concentrating human activity in particular areas. Concentrating the human activity in one area does three things: cements pathways that repeatedly import and export vectors of non‐native invasive species; creates the disturbed area necessary to enable non‐native invasive species to gain a foothold; and, establishes a source of invasions that, without appropriate controls, can quickly spread to a park's wilderness areas.  相似文献   

4.
A global conservation goal is to understand the pathways through which invasive species are introduced into new regions. Botanic gardens are a pathway for the introduction of invasive non‐native plants, but a quantitative assessment of the risks they pose has not been performed. I analyzed data on the living collections of over 3000 botanic gardens worldwide to quantify the temporal trend in the representation of non‐native species; the relative composition of threatened, ornamental, or invasive non‐native plant species; and the frequency with which botanic gardens implement procedures to address invasive species. While almost all of the world's worst invasive non‐native plants occurred in one or more living collections (99%), less than one‐quarter of red‐listed threatened species were cultivated (23%). Even when cultivated, individual threatened species occurred in few living collections (7.3), while non‐native species were on average grown in 6 times as many botanic gardens (44.3). As a result, a botanic garden could, on average, cultivate four times as many invasive non‐native species (20) as red‐listed threatened species (5). Although the risk posed by a single living collection is small, the probability of invasion increases with the number of botanic gardens within a region. Thus, while both the size of living collections and the proportion of non‐native species cultivated have declined during the 20th century, this reduction in risk is offset by the 10‐fold increase in the number of botanic gardens established worldwide. Unfortunately, botanic gardens rarely implement regional codes of conduct to prevent plant invasions, few have an invasive species policy, and there is limited monitoring of garden escapes. This lack of preparedness is of particular concern given the rapid increase in living collections worldwide since 1950, particularly in South America and Asia, and highlights past patterns of introduction will be a poor guide to determining future invasion risks.  相似文献   

5.
Abstract: Invasions of non‐native species are one of the major causes of losses of native species. In some cases, however, non‐natives may also have positive effects on native species. We investigated the potential facilitative effects of the North American red swamp crayfish (Procambarus clarkii) on the community of predators in southwestern Spain. To do so, we examined the diets of predators in the area and their population trends since introduction of the crayfish. Most predator species consumed red swamp crayfish, which sometimes occurred in over 50% of their diet samples. Moreover, the abundance of species preying on crayfish increased significantly in the area as opposed to the abundance of herbivores and to predator populations in other areas of Europe, where those predators are even considered threatened. Thus, we report the first case in which one non‐native species is both beneficial because it provides prey for threatened species and detrimental because it can drive species at lower trophic levels to extinction. Increases in predator numbers that are associated with non‐native species of prey, especially when some of these predators are also invasive non‐natives, may increase levels of predation on other species and produce cascading effects that threaten native biota at longer temporal and larger spatial scales. Future management plans should include the complexity of interactions between invasive non‐natives and the entire native community, the feasibility of successful removal of non‐native species, and the potential social and economic interests in the area.  相似文献   

6.
Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non‐native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e‐commerce). Using an automated search algorithm, we surveyed, on a daily basis, e‐commerce trade on 10 major online auction sites (including eBay) of approximately three‐fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio‐economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non‐invasive species were available online. Typically, for a particular plant family, 30–80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e‐commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade.  相似文献   

7.
Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal‐limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate‐suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate‐suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague‐transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. Efectos del Cambio Climático, Especies Invasoras y Enfermedades sobre la Distribución de Cangrejos de Río Europeos Nativos  相似文献   

8.
Abstract: The degree to which changes in community composition mediate the probability of colonization and spread of non‐native species is not well understood, especially in animal communities. High species richness may hinder the establishment of non‐native species. Distinguishing between this scenario and cases in which non‐native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce the abundance of native ants and fire ants in four experimental plots. We then observed the reassembly and reestablishment of the ants in these plots for 1 year after treatment. The abundance of fire ants in treated plots did not differ from abundance in control plots 1 year after treatment. Likewise, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants and fire ants to disturbance can be comparable.  相似文献   

9.
Risk Assessment of Riparian Plant Invasions into Protected Areas   总被引:6,自引:0,他引:6  
Abstract:  Protected areas are becoming increasingly isolated. River corridors represent crucial links to the surrounding landscape but are also major conduits for invasion of alien species. We developed a framework to assess the risk that alien plants in watersheds adjacent to a protected area will invade the protected area along rivers. The framework combines species- and landscape-level approaches and has five key components: (1) definition of the geographical area of interest, (2) delineation of the domain into ecologically meaningful zones, (3) identification of the appropriate landscape units, (4) categorization of alien species and mapping of their distribution and abundance, and (5) definition of management options. The framework guides the determination of species distribution and abundance through successive, easily followed steps, providing the means for the assessment of areas of concern. We applied the framework to Kruger National Park (KNP) in South Africa. We recorded 231 invasive alien plant species (of which 79 were major invaders) in the domain. The KNP is facing increasing pressure from alien species in the upper regions of the drainage areas of neighboring watersheds. On the basis of the climatic modeling, we showed that most major riparian invaders have the ability to spread across the KNP should they be transported down the rivers. With this information, KNP managers can identify areas for proactive intervention, monitoring, and resource allocation. Even for a very large protected area such as the KNP, sustainable management of biodiversity will depend heavily on the response of land managers upstream managing alien plants. We suggest that this framework is applicable to plants and other passively dispersed species that invade protected areas situated at the end of a drainage basin.  相似文献   

10.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   

11.
Abstract: One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. We used maximum‐entropy niche modeling to run distribution models for 222 amphibian and 371 reptile species (49% endemics and 27% threatened) for which we had 34,619 single geographic records. The planning region is in southeastern Mexico, is 20% of the country's area, includes 80% of the country's herpetofauna, and lacks an adequate protected‐area system. We used probabilistic data to build distribution models of herpetofauna for use in prioritizing conservation areas for three target groups (all species and threatened and endemic species). The accuracy of species‐distribution models was better for endemic and threatened species than it was for all species. Forty‐seven percent of the region has been deforested and additional conservation areas with 13.7% to 88.6% more native vegetation (76% to 96% of the areas are outside the current protected‐area system) are needed. There was overlap in 26 of the main selected areas in the conservation‐area network prioritized to preserve the target groups, and for all three target groups the proportion of vegetation types needed for their conservation was constant: 30% pine and oak forests, 22% tropical evergreen forest, 17% low deciduous forest, and 8% montane cloud forests. The fact that different groups of species require the same proportion of habitat types suggests that the pine and oak forests support the highest proportion of endemic and threatened species and should therefore be given priority over other types of vegetation for inclusion in the protected areas of southeastern Mexico.  相似文献   

12.
Abstract: Protected areas cover over 12% of the terrestrial surface of Earth, and yet many fail to protect species and ecological processes as originally envisioned. Results of recent studies suggest that a critical reason for this failure is an increasing contrast between the protected lands and the surrounding matrix of often highly altered land cover. We measured the isolation of 114 protected areas distributed worldwide by comparing vegetation‐cover heterogeneity inside protected areas with heterogeneity outside the protected areas. We quantified heterogeneity as the contagion of greenness on the basis of NDVI (normalized difference vegetation index) values, for which a higher value of contagion indicates less heterogeneous land cover. We then measured isolation as the difference between mean contagion inside the protected area and mean contagion in 3 buffer areas of increasing distance from the protected‐area border. The isolation of protected areas was significantly positive in 110 of the 114 areas, indicating that vegetation cover was consistently more heterogeneous 10–20 km outside protected areas than inside their borders. Unlike previous researchers, we found that protected areas in which low levels of human activity are allowed were more isolated than areas in which high levels are allowed. Our method is a novel way to assess the isolation of protected areas in different environmental contexts and regions.  相似文献   

13.
A recensus was undertaken of the Middlesex Fells (West), a 400-ha woodland park in Metropolitan Boston, to determine how species composition changed between 1894 (the time of first census) and 1993. This park is isolated by an 0.5-km-wide barrier of roads and development from the eastern half of the Fells preserve, is at least 5 km from other protected areas, and is strongly affected by human activity. Out of 422 original plant species, 155 species were no longer present in 1993. Sixty-four new species were recorded on the site in 1993, the majority of them exotic species. The proportion of native species in the flora went from 83% in 1894 to 74% in 1993. Overall, the number of native species is declining at a rate of O.36% per year, whereas the exotic species are increasing at a rate of 0.18% per year. Many of the native species lost were attractive and well-known components of the native flora, such as orchids and lobeliads. Many remaining native plant species have been reduced to one or a few small populations. Species of moist woods were disproportionately lost from the Fells. The loss of species has coincided with an increase in human activity, including ground fires, a greater number of trails and roads, thinning of the forest, and trampling of the vegetation, all of which may have contributed to species loss. A policy to stop and reverse this progressive loss of species might include preventing new trails from being developed, closing off some existing trails, excluding people from sensitive areas, and reintroducing some of the lost species.  相似文献   

14.
The threatened Marsh Grassbird (Locustella pryeri) first appeared in the salt marsh in east China after the salt marsh was invaded by cordgrass (Spartina alterniflora), a non‐native invasive species. To understand the dependence of non‐native Marsh Grassbird on the non‐native cordgrass, we quantified habitat use, food source, and reproductive success of the Marsh Grassbird at the Chongming Dongtan (CMDT) salt marsh. In the breeding season, we used point counts and radio‐tracking to determine habitat use by Marsh Grassbirds. We analyzed basal food sources of the Marsh Grassbirds by comparing the δ13C isotope signatures of feather and fecal samples of birds with those of local plants. We monitored the nests through the breeding season and determined the breeding success of the Marsh Grassbirds at CMDT. Density of Marsh Grassbirds was higher where cordgrass occurred than in areas of native reed (Phragmites australis) monoculture. The breeding territory of the Marsh Grassbird was composed mainly of cordgrass stands, and nests were built exclusively against cordgrass stems. Cordgrass was the major primary producer at the base of the Marsh Grassbird food chain. Breeding success of the Marsh Grassbird at CMDT was similar to breeding success within its native range. Our results suggest non‐native cordgrass provides essential habitat and food for breeding Marsh Grassbirds at CMDT and that the increase in Marsh Grassbird abundance may reflect the rapid spread of cordgrass in the coastal regions of east China. Our study provides an example of how a primary invader (i.e., cordgrass) can alter an ecosystem and thus facilitate colonization by a second non‐native species. Efectos de Spartina alterniflora Invasora Sobre Locustella pryeri en un Área Donde No Es Nativa  相似文献   

15.
Abstract:  For 10 years I monitored the population density of threatened medicinal plant species in seven protected areas in the Indian Himalayas. I also documented the indigenous uses of threatened medicinal plants through interviews with 138 herbal healers (83 Tibetan healers and 55 Ayurvedic healers) residing in the buffer zone villages of these protected areas. To assess the population status of threatened medicinal plant species, I sampled the 10 major habitat types in the protected areas. In all, I found 60 threatened medicinal plant species during the study period, of which 54 species occurred in the sampling plots. Twenty-two percent of threatened medicinal plant species were critically endangered, 16% were endangered, and 27% were vulnerable. Thirty-two threatened medicinal plant species were endemic to the Himalayan region. The density of threatened medicinal plant species varied with protected areas. The Valley of Flowers protected area had the highest number of threatened medicinal plant species. The "moist" habitat type was richest in these species among all 10 habitat types sampled. Arnebia euchroma (Royle ex Benth.) Johnston and Ephedra gerardiana Wall. ex Stapf. were the most common threatened medicinal plant species. The indigenous groups of healers used these threatened species in curing about 45 different ailments. Based on my findings, I believe that to ensure the long-term sustainability of threatened medicinal plants, medicinal-plant conservation areas should be established.  相似文献   

16.
Abstract: Extinctions can leave species without mutualist partners and thus potentially reduce their fitness. In cases where non‐native species function as mutualists, mutualism disruption associated with species’ extinction may be mitigated. To assess the effectiveness of mutualist species with different origins, we conducted a meta‐analysis in which we compared the effectiveness of pollination and seed‐dispersal functions of native and non‐native vertebrates. We used data from 40 studies in which a total of 34 non‐native vertebrate mutualists in 20 geographic locations were examined. For each plant species, opportunistic non‐native vertebrate pollinators were generally less effective mutualists than native pollinators. When native mutualists had been extirpated, however, plant seed set and seedling performance appeared elevated in the presence of non‐native mutualists, although non‐native mutualists had a negative overall effect on seed germination. These results suggest native mutualists may not be easily replaced. In some systems researchers propose taxon substitution or the deliberate introduction of non‐native vertebrate mutualists to reestablish mutualist functions such as pollination and seed dispersal and to rescue native species from extinction. Our results also suggest that in places where all native mutualists are extinct, careful taxon substitution may benefit native plants at some life stages.  相似文献   

17.
The extinction of large herbivores, often keystone species, can dramatically modify plant communities and impose key biotic thresholds that may prevent an ecosystem returning to its previous state and threaten native biodiversity. A potentially innovative, yet controversial, landscape‐based long‐term restoration approach is to replace missing plant‐herbivore interactions with non‐native herbivores. Aldabran giant (Aldabrachelys gigantea) and Madagascan radiated (Astrochelys radiata) tortoises, taxonomically and functionally similar to the extinct Mauritian giant tortoises (Cylindraspis spp.), were introduced to Round Island, Mauritius, in 2007 to control the non‐native plants that were threatening persistence of native species. We monitored the response of the plant community to tortoise grazing for 11 months in enclosures before the tortoises were released and, compared the cost of using tortoises as weeders with the cost of using manual labor. At the end of this period, plant biomass; vegetation height and cover; and adult, seedling, flower, and seed abundance were 3–136 times greater in adjacent control plots than in the tortoise enclosures. After their release, the free‐roaming tortoises grazed on most non‐native plants and significantly reduced vegetation cover, height, and seed production, reflecting findings from the enclosure study. The tortoises generally did not eat native species, although they consumed those native species that increased in abundance following the eradication of mammalian herbivores. Our results suggest that introduced non‐native tortoises are a more cost‐effective approach to control non‐native vegetation than manual weeding. Numerous long‐term outcomes (e.g., change in species composition and soil seed bank) are possible following tortoise releases. Monitoring and adaptive management are needed to ensure that the replacement herbivores promote the recovery of native plants. Estudiando el Potencial para Restaurar Ecosistemas Históricos de Forrajeo con Reemplazos Ecológicos de Tortugas Terrestres  相似文献   

18.
Conservation of biodiversity relies heavily on protected areas but their role and effectiveness under a warming climate is still debated. We estimated the climate-driven changes in the temperature niche compositions of bird communities inside and outside protected areas in southern Canada. We hypothesized that communities inside protected areas include a higher proportion of cold-dwelling species than communities outside protected areas. We also hypothesized that communities shift to warm-dwelling species more slowly inside protected areas than outside. To study community changes, we used large-scale and long-term (1997–2019) data from the Breeding Bird Survey of Canada. To describe the temperature niche compositions of bird communities, we calculated the community temperature index (CTI) annually for each community inside and outside protected areas. Generally, warm-dwelling species dominated communities with high CTI values. We modeled temporal changes in CTI as a function of protection status with linear mixed-effect models. We also determined which species contributed most to the temporal changes in CTI with a jackknife approach. As anticipated, CTI was lower inside protected areas than outside. However, contrary to our expectation, CTI increased faster over time inside than outside protected areas and warm-dwelling species contributed most to CTI change inside protected areas. These results highlight the ubiquitous impacts of climate warming. Currently, protected areas can aid cold-dwelling species by providing habitat, but as the climate warms, the communities’ temperature compositions inside protected areas quickly begin to resemble those outside protected areas, suggesting that protected areas delay the impacts of climate warming on cold-dwelling species.  相似文献   

19.
Abstract: Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species–host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant‐feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971–1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3–10.6 monophages per plant species. I calculated that 213,830–547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.  相似文献   

20.
Non‐native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer‐reviewed literature to evaluate responses of arthropod communities and functional groups to non‐native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty‐two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web‐building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities. Efectos de las Plantas Invasoras sobre los Artrópodos  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号