首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高寒草甸是青藏高原重要的草地类型之一。目前增温对高寒草甸温室气体通量影响的研究较少,尤其在不同尺度的增温条件下,温室气体通量的响应尚不明确。因此,设置多梯度增温实验,模拟未来不同幅度增幅情况,对预测高寒草甸温室气体通量的变化具有重要意义。为深入地认识气候变暖对高寒草甸温室气体通量的影响,假设高寒草甸温室气体通量的周转速率在增温条件下随增温梯度而加快。在青藏高原纳木错地区高寒草甸,采用开顶箱法(Open-top chambers,OTCs)设置对照(T0,不增温)以及4个不同程度的增温处理(T1、T2、T3、T4,分别增温1、2、3、4℃),结合静态箱-气相色谱法对增温处理后的CO_2、CH_4和N_2O通量进行同步观测。对3个生长季(2013—2015年)进行连续观测发现:(1)地下5 cm土壤3年的平均温度相对于对照处理分别增加1.73℃(T1)、1.83℃(T2)、3.03℃(T3)和3.53℃(T4);(2)高寒草甸生长季平均呼吸(CO_2)为(42.6±9.11)mg·m~(-2)·h~(-1),同时具有较强的CH_4吸收能力,达到(-47.96±8.76)μg·m~(-2)·h~(-1),其N_2O通量维持在较低水平,为(0.3±0.46)μg·m~(-2)·h~(-1);(3)在高寒草甸生长季,温室气体通量与温度以及水分均具有显著的相关关系,但增温未能显著改变生长季温室气体平均通量。以上结果表明,增温所引起的其他环境因素的改变(如伴随不同梯度增温下土壤水分变化的不确定性),导致高寒草甸在短期内进行内部调节,并维持温室气体通量稳定。  相似文献   

2.
三江源区具有重要的水源涵养功能,该区土壤水分的时空分布和变化对当地及周边地区的生态系统和气候调节有重要意义。为了解未来三江源草地土壤生态系统变化趋势,探究土壤温度和水分对模拟增温的响应规律,利用温湿度自动记录仪实时监测记录,分析了青海省玉树州称多县高寒草甸模拟增温条件下土壤温度和土壤水分的变化规律及冻融转换期土壤温度和水分的相关性。结果表明,(1)模拟增温条件下,0—5 cm和15—30 cm土层的土壤温度分别增加了2.50℃和1.36℃,对表层土壤(0—15 cm)的增温效果更加明显,且增温改变了不同土层解冻期和冻结期的长度。(2)0—15 cm和15—30 cm土层的土壤水分分别增加了0.07%和0.09%,15—30 cm土层的土壤水分的增幅大于0—15 cm土层,并且呈现出生长季变化波动大、非生长季变化波动小的规律。(3)在0—15 cm土层中,冻结期与解冻期,土壤温度和土壤水分均存在正相关关系(P0.01);在15—30 cm土层中,冻结期土壤含水量随着温度的增加呈现显著上升趋势。  相似文献   

3.
实验增温对西藏高原玉米田土壤呼吸的影响   总被引:1,自引:0,他引:1  
青藏高原农业区正经历着明显的气候变暖,但气候变暖如何影响高寒农业生态系统碳循环目前仍不明确。土壤呼吸是第二大陆地生态系统碳通量,高寒农业生态系统土壤呼吸对气候变暖的响应的不确定性限制了气候变化背景下人类对青藏高原高寒生态系统碳循环的预测能力。2015年4月在西藏玉米田采用开顶式生长箱进行模拟增温试验,旨在探究气候变暖对土壤呼吸及其温度敏感性的影响。在2015年玉米生长季节的5—8月份,利用Li8100土壤通量观测系统测定了6次土壤呼吸日变化(8:00—20:00),并利用HOBO微气候观测系统观测了5 cm深处的土壤温度和土壤湿度。结果表明,实验增温显著提高了5 cm深处的土壤温度(t=11.93,P=0.000),增幅为3.22℃,同时显著降低了5 cm深处的土壤含水量,降幅为0.04m~3·m~(-3)(t=4.87,P=0.008)。对照和模拟增温处理的土壤呼吸速率分别为6.79μmol·m~(-2)·s~(-1)和7.34μmol·m~(-2)·s~(-1),两者间无显著差异(F=1.65,P=0.235)。尽管如此,土壤呼吸仍存在着显著的日变化(F=137.66,P=0.000)和季节变异(F=54.48,P=0.000)。对照和模拟增温处理的土壤呼吸温度敏感性分别为1.70和1.77,两者间也无显著差异(t=2.69,P=0.100)。土壤温度解释了36%的对照处理的土壤呼吸变异,而土壤温度和土壤湿度共同解释了62%的土壤呼吸变异。因此,3.22℃的土壤增温没有显著改变土壤呼吸及其温度敏感性,这与3.22℃的土壤增温引起了土壤湿度的降低有关。  相似文献   

4.
青藏高原高寒生态系统碳循环对气候变暖和放牧等的响应依然存在很大不确定性.采用开顶式温室模拟增温,采用刈割和牲畜粪便归还相结合的方法模拟中度放牧,研究气候变暖和中等强度放牧对青藏高原东部高寒草甸生态系统碳交换、生态系统光合、生态系统呼吸与土壤呼吸的影响.结果显示:模拟气候变暖和中度放牧显著改变青藏高原东部高寒草甸生态系统净碳交换及其组分,并且生态系统碳循环的响应随时间呈现不同的变化.增温显著提高净生态系统碳交换和生态系统光合,增加生态系统净碳固定;中度放牧降低生态系统呼吸和土壤呼吸,而对生态系统净碳交换、生态系统光合的影响存在明显季节动态变化,即在处理初期(8月上旬)明显降低,而后逐渐上升,在生长季后期、末期(9月中下旬-10月份)显著高于对照;增温和中度放牧未表现明显的交互作用,增温+放牧处理增加了季节性平均净生态系统碳交换和生态系统光合,但没有显著影响季节平均生态系统呼吸.增温和中度放牧的交互作用对碳交换的影响存在时间尺度上的变化.本研究表明,在未来气候变暖和中等强度放牧的背景下,青藏高原东部高寒草甸碳汇功能有可能增强.  相似文献   

5.
植物地下生物量是高寒生态系统重要的碳库,可以反映植物对极端环境的适应特征。以高寒草原、高寒草甸草原和高寒草甸3种主要草地类型为对象,对比分析了非生长季和生长季的地下生物量,探究不同类型的高寒草地地下生物量分配机制及其动态变化过程。结果表明:(1)3种草地地下生物量的空间分布在生长季和非生长季均呈现"T"字型分布。在这两个时期,3种草地0~10 cm的生物量占总地下生物量的比例均表现为:高寒草原(91.20%,94.72%)高寒草甸草原(83.17%,92.07%)高寒草甸(67.04%,68.38%),且其比例在生长季均有增加;(2)两个时期高寒草甸地下生物量均最高(1 620.39±71.09)g·m~(-2),(3 950.08±291.46)g·m~(-2),非生长季高寒草原最低(136.24±9.14)g·m~(-2),生长季高寒草甸草原最低(133.97±6.93)g·m~(-2);高寒草甸和高寒草原地下生物量在生长季都有显著增加,而高寒草甸草原显著减少;(3)地下生物量与土壤含水量有显著的正相关关系,在同样的温度条件下,土壤含水量是地下生物量的重要影响因子;而生长季是藏北地区降水比较集中的时期,土壤表层水分的增加促使根系向表层生长。  相似文献   

6.
根系碳(C)氮(N)磷(P)密度影响植物与土壤间碳氮磷养分的循环过程,从而影响生态系统的地球化学循环。以申扎县高寒草原、高寒草甸草原和高寒草甸3种草地为对象,探究非生长季(4月)和生长季(8月)3种高寒草地根系C、N、P密度的分布规律及其差异。结果表明,(1)3种草地根系C、N、P密度在两个时期均呈现"T"字型空间分布,即3种草地根系C、N、P密度均随着土壤深度的增加而降低,且整体上高寒草甸的养分密度显著高于其他两种草地。3种草地根系C、N、P密度范围分别为57.287—1 130.753、1.457—38.243、0.090—3.217 g·m~(-2)。(2)3种草地的C、N、P密度具有显著的季节差异。生长季,高寒草原总地下C、N密度显著高于非生长季,分别高出非生长季47.822%和60.910%,而总地下P密度无显著差异;而生长季高寒草甸草原总的和每层的地下C、N、P密度显著低于非生长季。高寒草甸总地下C、N、P密度表现为生长季高于非生长季。高寒草原和高寒草甸增加的养分密度集中在0—10 cm深度。高寒草甸、高寒草原及高寒草甸草原的物种组成不同,土壤养分含量差异及土壤水分状况的不同可能是导致3种草地根系养分密度差异的原因。本研究可以为高寒草地根系养分密度季节变化提供基础资料,进一步认识草地根系在养分循环中的作用提供理论支持。  相似文献   

7.
增温、刈割对高寒草甸地上植被生长的影响   总被引:2,自引:0,他引:2  
近些年由于气候变化和土地利用方式变化的双重影响,高寒草甸植被逐渐表现出退化现象。探讨高寒草甸植被生长特征在气候变化和人类活动中的动态变化规律,对高海拔地区植被的保护和合理利用,防止草地退化和沙漠化发生具有重要意义。以青藏高原高寒草甸为研究区,利用增温实验模拟气候变暖、刈割实验模拟人类放牧,采用随机区组设计,设置对照、增温、刈割、增温+刈割交互作用四种实验处理,于2012─2013年植被生长季调查高度、盖度和地上生物量,研究高寒草甸地上植被生长特征对增温、刈割的响应,以此探讨青藏高原高寒草甸地上植被在气候变化和人类活动中的变化趋势。结果表明:(1)夏季是高寒草甸植被生长的最佳季节,其中7月是其生长的最佳月份;高寒草甸地上植被生长特征年内生长季和年际间的变化趋势差异较大,表现为植被高度在生长季中期高于初期和末期(P0.05),植被盖度和地上生物量在生长季中期和末期高于初期(P0.05);2012年的植被高度和地上生物量略高于2013年(P0.05),但植被盖度略低于2013年(P0.05)。(2)植被高度、盖度和地上生物量在增温第2年(2012年)的各实验处理间均未出现显著差异(P0.05),而在第3年(2013年)开始出现显著差异(P0.05),其中2年刈割显著降低植被高度和地上生物量(P0.05),3年增温和2年刈割的交互作用显著降低植被盖度和地上生物量(P0.05)。以上结果表明,增温、刈割对高寒草甸地上植被生长的影响在短期和长期尺度上存有差异,初期并不显著,但随着时间推移,影响开始加强。  相似文献   

8.
海北高寒草甸返青期土壤温度与水分动态变化   总被引:1,自引:0,他引:1  
分析青藏高原高寒草甸返青期土壤水分和温度的变化以及相互关系是理解高寒草甸生态系统变化的重要基础。为明晰青藏高原祁连山东部高寒草甸返青期的土壤温度与水分变化规律,选择祁连山东部海北高寒草甸为试验区,以实地测试与方差、相关及回归分析相结合的方法研究了海北高寒草甸返青期土壤分层水分和温度的动态变化。结果表明:(1)观测期内,高寒草甸整个返青期表层0 cm及地表以下5、15、30、60和120 cm土壤各层平均温度分别为10.47、4.11、3.28、1.76、0.80和0.51℃,表层0 cm地温受气温变化影响最为显著;返青早期各层土壤温度均稳定于0℃左右,返青中期各层土壤温度迅速增加,返青中后期自上而下不同土壤层温度逐渐降低;(2)表层、中层和深层土壤平均含水量分别为17.3%、20.6%和20.9%,中层和深层土壤水分含量较小;表层土壤含水量波动剧烈,在整个返青期呈逐渐下降趋势,中层和深层土壤含水量连续增加,波动范围小;(3)高寒草甸土层0~15 cm的土壤体积含水量与土壤温度呈显著负相关,随土壤平均温度增加,土壤体积含水量逐渐降低;15~30、30~45和45~60 cm较深层土壤含水量与土壤平均温度呈显著正相关,随土壤深度增加其相关性也随之增强。该研究可为理解青藏高原高寒草甸生态系统的变化规律和变化过程提供参考依据,对高寒草甸的保护及可持续利用也具有重要意义。  相似文献   

9.
放牧是高寒草甸一种重要的利用方式,对土壤理化性质和植被会产生重要影响,研究放牧对高寒草甸生态系统呼吸的影响对估算碳交换和制定合理放牧政策具有重要意义.利用静态箱-气象色谱法,于2012年8月到2013年7月在青藏高原东缘高寒草甸对轻度、中度和重度3种放牧强度下的生态系统呼吸进行每月至少一次的连续观测,以估算高寒草甸生态系统呼吸,并探讨放牧强度对生态系统呼吸的作用.结果显示:轻度、中度和重度放牧条件下,年均生态系统呼吸(以C计)分别为226.33±62.30、213.63±53.22和215.15±53.19 mg m~(-2) h~(-1),三者之间无显著差异(P0.05);在生长季生态系统呼吸分别为367.97±47.86、324.62±44.95和348.37±43.10 mg m~(-2) h~(-1),在非生长季生态系统呼吸分别为105.81±22.13、96.55±14.69和110.61±16.89 mg m~(-2) h~(-1),在不同放牧强度下生态系统呼吸均表现出明显的季节特征,但在相同季节不同放牧强度间生态系统呼吸差异不显著;月累积降水量与生态系统呼吸呈显著正相关关系;该区域放牧地生态系统平均年累积呼吸为472.63 g m~(-2) h~(-1).本研究表明,在试验初期不同放牧强度对生态系统呼吸无显著作用.  相似文献   

10.
为研究在模拟增温状态下高寒湿地土壤呼吸的动态变化,并探究增温状态对土壤呼吸产生的影响,于2016年6月—2017年9月通过LI-8100土壤碳通量测定系统(开路式)对实验样地矮嵩草草甸(Kobresia humilis)的土壤呼吸速率及地下5、10和15 cm土壤温度、土壤体积含水量进行测定,结果表明:模拟增温有利于提高土壤呼吸速率,其与自然状态(CK)、增温状态(W)土壤呼吸速率之间有极显著性差异(P0. 01);土壤呼吸速率与各层土壤温度和土壤体积含水量均有极显著相关性(P0. 01),自然状态下的温度敏感性(Q10值)均比增温状态下的Q10值大,并且Q10值随着土壤深度的增加而增加;然而土壤温度与体积含水量共同影响下的土壤呼吸作用在2 a内减弱;增温状态有利于提高地上及地下生物量,并且对浅层地下生物量作用明显;与不增温比较,增温有利于提高土壤有机质含量,但差异随土壤深度的增加而依次减少。研究表明,连续2 a的增温对高寒湿地土壤呼吸产生促进作用,增温环境有利于促进土壤碳释放。  相似文献   

11.
氮素是农田土壤的主要养分限制因子之一,在全球气候变化背景下研究农田土壤氮素对温度和降水变化的响应,对评价气候变化农业生态效应具有重要的意义。通过田间试验,利用红外辐射灯管模拟增温,人工减少降水量,并测定土壤氮素含量,以探讨增温和降水减少对冬小麦和大豆生长季土壤氮素的影响规律。试验设置对照(CK)、增温(T,增温约2℃)、降水减少(P,降水量减少30%)、增温和降水减少复合处理(TP,增温约2℃+降水减少30%)4个水平处理。结果表明,在冬小麦生长季,与CK相比,T、P和TP处理显著减少了返青期土壤全氮,增加了成熟期土壤全氮;T和TP处理显著降低了拔节期土壤全氮。T、P和TP处理显著减少了孕穗-抽穗期土壤铵态氮。P和TP处理显著增加了返青-灌浆期土壤硝态氮,T处理显著增加了拔节-抽穗期土壤硝态氮。在大豆生长季,与CK相比,T、P和TP处理对土壤全氮含量的影响都没有达到显著性水平。T处理使鼓粒期土壤铵态氮增加10.0%(P=0.038),T和P处理使结荚期土壤硝态氮分别减少了27.4%(P=0.011)和27.1%(P=0.009),T、P和TP使鼓粒期土壤硝态氮分别增加了46.6%(P=0.007)、41.3%(P=0.014)和56.3%(P=0.003)。研究表明,增温和降水减少改变了农田土壤氮素含量,且对冬小麦生长季土壤氮素的影响较大豆生长季更加明显。  相似文献   

12.
川西北高寒草地生态地位突出但沙化严重,为了解其在沙化治理恢复中的碳通量变化机制,于2016年草地生长季节(7-9月)在红原县沙化草地治理恢复区分别选择恢复初期、恢复中期、恢复后期、未恢复治理4类沙化草地,利用仪器LI-8100测定CO2通量,并分析影响碳通量变化的因素.结果表明,随着治理恢复程度的加深,沙化草地碳汇功能逐渐增强,恢复初期、中期、后期样地在生长季净生态系统CO2交换量(NEE)分别为-1.61、-3.55、-4.38μmol m-2s-1,恢复初期到中期碳通量变化最为剧烈,提高了约120.50%.恢复治理也使沙化草地生态系统呼吸(ER)和土壤呼吸(SR)加强(P0.05).7月中下旬,各恢复梯度样地NEE、ER和SR分别达到峰值,之后随生长季延长,各指标均接近零.生长季7-9月期间,对照样地碳通量日动态变化平缓,均表现为全天排放;在各恢复治理阶段沙化草地中,碳通量日动态均呈单峰型格局,且随着沙化恢复的进程,日动态峰值绝对值显著升高(P0.05),表现出更强的碳汇能力.回归分析表明,碳通量与植被盖度、地上生物量、土壤0-5 cm含水量达到极显著正相关(P0.01),与0-5 cm土壤温度相关性较弱,表明在川西北高寒沙化恢复草地生长旺季,与0-5 cm土壤温度相比,0-5 cm土壤含水量对碳通量的影响更大.综上所述,沙化治理显著提高了川西北高寒沙化草地生长季的固碳能力,且在恢复中期,受植被恢复和表层土壤(0-5 cm)含水量状况改善的影响,固碳能力显著提升.  相似文献   

13.
基于涡度相关系统对青海湖藏嵩草湿草甸湿地生态系统CO_2通量变化特征及其影响因子进行研究。结果表明,青海湖藏嵩草湿草甸湿地生态系统CO_2通量具有明显的日变化和月变化特征。生长季表现为CO_2的净吸收,其吸收峰值出现在12:30—15:00之间,最大值为0.42 mg·m~(-2)·s~(-1),排放峰值出现在20:00—22:30之间,最大值为0.24 mg·m~(-2)·s~(-1)。非生长季日变化较小,总体表现为CO_2的净排放,除了11月,其他月份白天CO_2排放通量都明显大于夜间。2015年青海湖高寒藏嵩草湿草甸湿地生态系统全年净生态系统CO_2交换量为54.55 g·m~(-2),表现为碳源。路径分析表明,土壤温度、光合有效辐射和饱和水汽压差是影响CO_2通量日交换大小的主要控制因子。  相似文献   

14.
土壤温湿度对北京大兴杨树人工林土壤呼吸的影响   总被引:2,自引:0,他引:2  
采用Li-cor-8150土壤呼吸测定系统,对北京大兴杨树人工林(欧美107,Populus×euramericana cv."74/76")土壤CO_2释放通量、土壤温度和水分进行了为期1年(2007)的定位连续观测,系统研究土壤温度(T_S)和土壤含水量(w)对土壤呼吸速率(R_s)的影响.结果表明:(1)土壤呼吸速率日变化呈单峰曲线,具有明显的白天高,夜间低的规律.非生长季土壤呼吸速率较低,自5月份土壤呼吸速率上升,8月份达到最大值.(2)土壤温度是影响土壤呼吸速率的主要因素,用指数模型解释全年过程中土壤温度对土壤呼吸速率变化的能力为69%.在低温段(<0℃)土壤呼吸速率随土壤温度升高而下降,而在土壤温度>0℃条件下土壤呼吸速率与土壤温度表现为正相关.土壤呼吸速率随土壤含水量上升表现出先升高后降低的趋势,三次方程模拟表明土壤水分的贡献率为33%,而当土壤含水量低于9.5%时,土壤水分的贡献率上升到51%.(3)土壤温、湿度共同作用于土壤呼吸,在不同含水量区间土壤呼吸对土壤温度的响应程度不同:在4%~10%土壤含水量范围内.土壤温度与土壤呼吸的指数模型的R~2达到0.86,而在土壤水分较高或较低时,其相关系数仅为0.6.土壤温度是影响土壤呼吸速率变化的主导因素,当土壤含水量过低或过高时,土壤温度的主导作用相对减弱,土壤含水量的影响作用相对加强.土壤呼吸的温度敏感性受土壤温度区间和水分区间的综合影响,用指数模型模拟土壤温湿度对土壤呼吸的影响不能很好的模拟土壤湿度的作用,所以单一模型并不是描述土壤温湿度对土壤呼吸的共同影响的最优模型,而多种模型复合的数学模型有待进一步研究.  相似文献   

15.
近年来随着降雨格局的变化,区域性干旱加剧,而干旱对土壤碳循环的影响情况仍不十分明确。为探究降雨减少对土壤呼吸的影响,2016年以华北落叶松(Larix principis-rupprechtii)人工林为研究对象,设置对照(CK)、减少降雨30%(W1)和减少降雨60%(W2)3个处理水平,通过人工隔离降雨模拟干旱条件对土壤呼吸速率的影响。在6—10月份生长季,采用LI-8100土壤碳通量测量系统测定每月月中、月末土壤呼吸速率,并同时测定5 cm深度土壤温湿度。结果表明:减少降雨60%使土壤湿度显著降低17.8%(P0.05),而对土壤温度的影响不显著;减少降雨30%对土壤温湿度的影响均不显著;对照、减少降雨30%和减少降雨60%的平均土壤呼吸速率分别为2.45、2.29和2.16μmol·m~(-2)·s~(-1),与对照相比,减少降雨抑制了土壤呼吸,减少降雨60%使平均土壤呼吸速率降低了11.84%(P0.05),土壤呼吸通量减少了41.01 g·m~(-2),而减少降雨30%对土壤呼吸的影响不显著;土壤呼吸速率与土壤温度呈显著指数相关(P0.05),土壤温度解释了66.2%的对照处理的土壤呼吸变异,适当减少降雨能够提高土壤呼吸速率与土壤温度的相关性;在2~7℃土壤温度下,土壤呼吸速率与土壤湿度呈显著二元线性相关(P0.05),且在2~7℃土壤温度下减少降雨提高了土壤呼吸速率和土壤湿度的相关性;在13~17℃土壤温度下,减少降雨则降低了土壤呼吸速率和土壤湿度的相关性;减少降雨提高了土壤呼吸的温度敏感性,且随着降雨减少程度的增大而增大。可见,降雨是影响华北落叶松人工林土壤呼吸的重要因子。  相似文献   

16.
为了解若尔盖高原高寒草地沙化过程生态系统中CO2的收支变化,利用Li-840静态箱法于2013年生长季(5-10月),在一处典型沙化区域,分别调查未沙化(UN)、中度沙化(MO)和重度沙化(SE)草地的生态系统净通量(NEE)、生态系统呼吸(ER)和土壤呼吸(SR)的季节和日动态变化.结果显示:若尔盖高寒草地未沙化草地和中度沙化草地NEE季节变化呈单峰状,中度沙化草地波动性增强,而重度沙化草地在整个生长季节变化不明显.未沙化草地在生长季节日间瞬时NEE为-3.33μmol m-2 s-1,中度沙化草地为-2.06μmol m-2 s-1,是未沙化草地的61.86%,严重沙化草地为-0.62μmol m-2 s-1,是未沙化草地的18.61%.在沙化过程中,土壤所贡献给生态系统整体的呼吸占比,从72.90%增加到79.28%,季节变化动态呈现出与系统呼吸相似的变化规律.未沙化草地在生长季节的初期和中期均呈现出较强的碳汇特性,固碳速率分别为9.05 g m-2 d-1和28.70 g m-2 d-1,而在末期呈现出微弱碳源.本研究表明,沙化使得高寒草地在生长季节由微弱的碳汇转变成为碳源,固碳能力严重削弱.  相似文献   

17.
在全球变化的背景下,为了研究藏北高寒放牧草甸的生态系统呼吸和土壤呼吸特征,沿着3个海拔高度(4 300、4 500和4 700 m)观测了2010年7-9月白天的呼吸通量。同时,观测了同期的土壤温度、土壤水分含量、空气温度和相对湿度,在定性分析土壤水分含量和呼吸通量关系的基础上,将其分成低、中和高3个水平,在此基础上,分析生态系统呼吸、土壤呼吸与土壤温度、土壤水分含量、空气温度以及相对湿度的关系。结果表明,空气温度是决定生态系统呼吸和土壤呼吸变异的主导因子;生态系统呼吸、土壤呼吸以及裸地的土壤呼吸的Q10值分别为1.83~3.07、1.54~4.13和1.29~2.89;总体而言,生态系统呼吸和土壤呼吸Q10值随着海拔的升高和土壤水分含量的增加而增大。  相似文献   

18.
泥炭地在全球碳循环中起着重要作用,其碳源、碳汇功能的转变已成为研究全球气候变化的热点。为研究湖北省神农架林区大九湖亚高山泥炭湿地碳排放特征及影响因素,采用涡度相关法对大九湖泥炭湿地CO_2通量进行了观测,选取2016年6—8月作为生长季和2015年12月—2016年2月作为非生长季,对比分析泥炭湿地在不同生长季节CO_2通量的变化规律及其影响因子。结果表明,(1)大九湖泥炭湿地生态系统生长季CO_2通量的日变化规律明显,整体呈"U"型曲线,日变化范围为-6.84~6.65μmol·m~(-2)·s~(-1);非生长季CO_2通量变化趋势平缓,在-0.88~5.19μmol·m~(-2)·s~(-1)之间。(2)白天生长季与非生长季的CO2通量与光量子通量密度(PPFD)均符合直角双曲线关系,但生长季PPFD与CO_2通量的拟合效果(R~2=0.427 3,P0.01)优于非生长季(R~2=0.045 6,P0.01)。(3)生长季的气温(Ta)与CO_2通量呈二次曲线相关(R~2=0.248 6,P0.01),CO_2通量随Ta的升高呈先增加后降低;非生长季Ta与CO_2通量(R~2=0.042 8,P0.01)相关性显著,两者呈负相关,但Ta仅能解释CO_2通量4.28%的变异数据。(4)土壤温度(Ts)和土壤含水量(SWC)对CO_2通量的影响,主要体现在生态系统呼吸上。生长季夜间生态系统呼吸受Ts与SWC的共同影响(R~2=0.199 5,P0.01),生态系统呼吸的温度敏感性Q10值为1.84;非生长季夜间生态系统呼吸与Ts、SWC的相关性均不显著(P0.05)。  相似文献   

19.
藏北高原高寒草甸光能利用效率对增温增水的响应   总被引:1,自引:0,他引:1  
量化植被光能利用效率对增温增水的响应是全球碳循环研究的重要组成部分。为了探讨藏北高原高寒草甸光能利用效率对气候变暖和降水增多的响应,2014年6月在藏北高原高寒草甸布设了1个增温增水实验平台,采用了完整的两因子(增温和增水)实验设计,每个因子设置3个处理水平(不处理、低幅度和高幅度处理),共9个处理组合。设置40 cm和80 cm的开顶式生长箱实现两个幅度的实验增温(分别增加了0.34℃和1.11℃的日最低空气温度),低幅度和高幅度增水处理分别增加了15%和30%的降水。基于中分辨率成像光谱仪的植被光能利用效率算法,利用观测的饱和水汽压差和日最低空气温度模拟了2014—2016年生长季节(6—9月)植被的光能利用效率。结果表明,增温对日最低空气温度(F=39.10,P=0.000)、饱和水汽压差(F=47.45,P=0.000)和光能利用效率(F=4.20,P=0.032)都有显著影响,而增水对饱和水汽压差(F=5.72,P=0.012)有显著影响。增温引起的光能利用效率的变化与增温幅度表现为二次曲线关系,与增温引起的饱和水汽压差的变化量表现为负相关关系。增水处理对光能利用效率无显著影响,且增水引起的光能利用效率的变化与增水引起的饱和水汽压差的变化量呈负相关关系。因此,降水增多可能对藏北高原高寒草甸的光能利用效率无显著影响,而光能利用效率随着增温幅度的变化而变化。  相似文献   

20.
陆地生态系统土壤呼吸对气候变暖的响应研究方面目前还没有一致的结论,其原因可能为土壤呼吸不同组分对土壤温度变化的敏感性及相应的非生物和生物机制存在显著差异。文章分别从非生物因素和生物因素系统地论述了增温对青藏高原东部窄叶鲜卑花(Sibiraea angustata)高寒灌丛土壤呼吸不同组分的影响机制,发现增温可通过提高土壤微生物群落和植物根系的生理活性直接促进土壤异养呼吸和根系呼吸。同时增温能通过改变非生物因子影响土壤呼吸各组分速率,如增温显著提高土壤养分含量和土壤酶活性,进而间接促进土壤呼吸;而增温引起土壤水分含量较小程度的降低不足以抑制土壤呼吸过程。增温还能通过改变植物群落生产和土壤微生物群落结构等生物因子影响土壤呼吸各组分速率,如增温导致植物细根生产量、死亡量和分解速率提高,非根际土壤微生物生物量与活性增加;增温还导致土壤微生物功能群向革兰氏阳性菌和放线菌群落转变,从而导致土壤微生物对土壤惰性有机碳的利用增加。受根际土壤可利用碳含量较高的影响,根际微生物呼吸对增温的响应不敏感,增温对根际微生物生物量的影响也不显著。由此可见,在青藏高原东部高寒灌丛生态系统中,气候变暖将通过改变非生物与生物因子影响土壤呼吸等碳释放过程。以上结果有利于更加全面地认识全球气候变暖背景下高寒灌丛土壤碳循环过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号