首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同热解条件下制备的秸秆炭对铜离子的吸附动力学   总被引:1,自引:0,他引:1  
研究了不同热解条件下制备的秸秆生物炭对铜离子的吸附动力学规律.以常见的玉米杆和番茄杆为原料,在限氧升温热解的条件下制备生物炭.研究不同热解温度(300、400、500、600、700℃)和不同热解时间(1、2、4、6、8 h)对秸秆生物炭吸附性能的影响,实验结果表明番茄杆样品T6004和玉米杆样品C6006分别获得对铜离子的最佳吸附效果,其去除率分别为98.40%和98.77%.通过批试验探明秸秆生物炭对Cu~(2+)的吸附动力学特征与机理,秸秆生物炭对Cu~(2+)的吸附动力学数据随时间的变化能很好地用准二级动力学方程进行拟合,说明生物炭对Cu~(2+)的吸附是一个复杂的过程,并不是简单的单层吸附.用颗粒内扩散模型进行拟合分析发现,热解时间和温度对秸秆生物炭的吸附边界层厚度均会产生不同程度的影响.此外,颗粒内扩散并非吸附过程的唯一控速步骤,表面吸附和液膜扩散共同控制吸附反应速率.  相似文献   

2.
皇竹草生物炭的结构特征及对重金属吸附作用机制   总被引:1,自引:0,他引:1  
本研究以皇竹草秸秆为生物质原料,在不同温度(400—700℃)下利用限氧热解法烧制一系列秸秆生物炭.利用扫描电镜(SEM)、X射线衍射(XRD)和拉曼光谱对所得生物炭样品进行分析,结果表明,500℃可使皇竹草秸秆生物炭充分热解,所得的生物炭晶体构成主要由半晶体结构涡轮层碳和一些矿物晶体组成,表面含有芳香类化合物、不饱和的醚类物质、无定形碳和C—C、C—O、C—OH等官能团.吸附实验表明,不同热解温度的皇竹草秸秆生物炭对混合重金属(Cr(Ⅵ)、Cu~(2+)、Cd~(2+))的吸附效果差异显著.在EDTA共存的条件下,皇竹草秸秆生物炭对Cr(Ⅵ)的吸附量远高于Cu~(2+)、Cd~(2+),其中500℃下热解得到的生物炭对Cr(Ⅵ)的吸附量达1.525 mg·g-1,而对Cu~(2+)和Cd~(2+)的吸附量约在0.05—0.15 mg·g-1.p H影响实验表明,在酸性条件(p H 1—4)下有利于Cr(Ⅵ)的吸附,其吸附量最高可达1.836 mg·g-1,在碱性条件(p H 9—13)下有利用于Cu~(2+)的去除,其吸附量最高可达0.836 mg·g-1.Cu~(2+)和Cd~(2+)在生物炭的吸附作用主要发生在C—C/C—H、C—O/C—OH等官能团上,重金属与生物炭中C—O官能团中的氧原子可能存在配位作用.  相似文献   

3.
不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能   总被引:1,自引:0,他引:1  
以菌糠废弃物为原料,采用限氧裂解法在500℃条件下制备香菇菌糠、猴头菇菌糠和平菇菌糠生物炭(LEBC、HEBC和POBC).利用SEM、XRD和FTIR等方法对吸附剂进行了表征;通过吸附动力学、等温吸附、生物炭酸化实验探究了3种菌糠生物炭去除水溶液中Cu~(2+)、Cd~(2+)的效果及机理.结果表明,在溶液初始pH 2—3时,3种菌糠生物炭对溶液中Cu~(2+)、Cd~(2+)的吸附量急剧增加.LEBC、HEBC、POBC对Cu~(2+)、Cd~(2+)的吸附符合准二级动力学模型,对Cu~(2+)的吸附速率分别为10.15×10~(-3)、7.08×10~(-3)、0.69×10~(-3) mg·g~(-1)·min~(-1),对Cd~(2+)的吸附速率分别为6.53×10~(-3)、5.19×10~(-3)、0.26×10~(-3) mg·g~(-1)·min~(-1).不同浓度下LEBC、HEBC、POBC对Cu~(2+)的吸附符合Langmuir模型,最大吸附量依次为56.74、11.98、77.32 mg·g~(-1);而Cd~(2+)的吸附符合Freundlich模型,最大吸附量依次为74.26、36.49、70.2 mg·g~(-1).LEBC在较短的时间内能达到较大的吸附量,可作为去除水体中Cu~(2+)、Cd~(2+)的优质吸附剂.XRD和FTIR等分析结果表明生物炭对Cu~(2+)、Cd~(2+)的吸附机制包括物理吸附、阳离子-π作用、官能团络合及沉淀.3种生物炭经酸化处理后,对Cu~(2+)、Cd~(2+)的吸附能力显著下降,表明生物炭中碳酸盐引起的Cu~(2+)、Cd~(2+)表面沉淀在吸附过程中起重要作用.  相似文献   

4.
以动植物来源(鸡粪便和小麦秸秆)的生物质为原料,在350和650℃条件下慢速热解制备生物炭并表征其理化性质,采用批量吸附试验研究不同吸附时间、溶液pH值和Cd~(2+)浓度条件下生物炭对Cd~(2+)的吸附特性。结果表明,随着热解温度升高,生物炭的pH值和灰分含量升高,芳香性和疏水性增强,极性减弱。相同热解温度条件下,动物来源的鸡粪炭pH值和灰分含量比植物来源的小麦秸秆炭高,芳香结构更完备。生物炭对Cd~(2+)的吸附动力学过程均符合准二级动力学模型(R20.99),吸附在12 h时达到平衡,吸附过程均由外部液膜扩散、表面吸附和颗粒内扩散共同控制,且后者是主要限速步骤。随着溶液pH值的升高(2.0~6.0),生物炭对Cd~(2+)的吸附量均逐渐增加。Langmuir模型能很好地描述植物来源的小麦秸秆炭对Cd~(2+)的吸附行为(R2为0.970 3~0.981 5),Freundlich模型更适用于动物来源的鸡粪炭(R2为0.971 7~0.976 9),动物来源的鸡粪炭对Cd~(2+)的吸附效果优于植物来源的小麦秸秆炭。阳离子-π作用和沉淀作用是650℃生物炭吸附Cd~(2+)的主要机制。  相似文献   

5.
为研究不同热解温度条件下生物炭的理化性质及对Zn~(2+)的吸附特性和机理,以龙虾壳为生物质原料,采用限氧慢速热解法在300、400、500和600℃条件下制备龙虾壳生物炭,分别记作LS300、LS400、LS500和LS600。采用扫描电镜能谱仪(SEM-EDS)、傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)等对龙虾壳生物炭进行表征,并结合批量吸附实验分析其对Zn~(2+)的吸附特性和机理。结果表明:随着热解温度的升高,龙虾壳生物炭产率降低,灰分含量升高,pH增大,孔径增大,芳香性增强;4种生物炭吸附动力学遵循准二级动力学模型,LS600在7 h时达到吸附平衡,其他3种均在24 h时达到平衡;LS600的吸附等温线更符合Langmuir模型,LS300、LS400和LS500的等温吸附过程更符合Freundlich模型,LS600对Zn~(2+)的吸附效果最好,最大吸附容量可达462. 50 mg·g-1;龙虾壳生物炭对Zn~(2+)的吸附机理包括阳离子交换、沉淀作用、与含氧官能团络合及与π电子配位。  相似文献   

6.
为了探索生物炭修饰材料对嘉陵江流域沿岸土吸附Cu~(2+)的影响,采用生物炭(B)、磁化生物炭(MB)以及50%和100%CEC十二烷基二甲基甜菜碱(BS-12)修饰MB(分别以50%BS-MB和100%BS-MB表示)作为炭修饰材料,分别将其以1%(质量比)加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,共计形成20个混合土样(以原土作为对照),批处理法研究各样品对Cu~(2+)的等温吸附和热力学特征,并对比不同温度、pH值和离子强度下的吸附差异.结果表明,不同混合土样对Cu~(2+)吸附等温线均呈"L"型且符合Langmuir模型,最大吸附量q_m保持在62.20—308.88 mmol·kg~(-1)之间.相同生物炭修饰材料添加下Cu~(2+)吸附量表现为JLNBCXHC的趋势.20—40℃范围内,各混合土样对Cu~(2+)的吸附量均随温度的升高而增加,表现为增温正效应.离子强度从0.01 mol·L~(-1)增加到0.1 mol·L~(-1),各混合土样(除HC外)对Cu~(2+)的吸附量均呈现先增后降的趋势.pH值升高有利于混合土样对Cu~(2+)的吸附.各混合土样对Cu~(2+)的吸附是一个自发、吸热和熵增的反应过程,且CEC和比表面积是决定混合土样对Cu~(2+)吸附效果的关键.  相似文献   

7.
为了解人工合成药物在生物炭上的吸附动力学特征及其浓度效应的影响,选择卡马西平(CBZ)为目标污染物。探讨不同初始质量浓度(2、4、25、50 mg·L~(-1))在不同裂解温度(200、300、500℃)下制备的生物炭上的吸附动力学特征。结果表明,双室一级动力学模型可以精确地描述CBZ在生物炭上的吸附动力学特征。CBZ的快室吸附对总体吸附的贡献随初始浓度的增大而减小,而慢室吸附贡献则增大。π-π作用可能对CBZ的吸附贡献较大。孔隙填充可以描述慢室吸附过程,可能是吸附速率的控制环节。  相似文献   

8.
农林废弃物基生物炭对重金属铅和镉的吸附特性   总被引:2,自引:0,他引:2  
以沙柳、水稻和玉米秸秆3种农林废弃物为原材料,于500℃条件下热解制备生物炭,并通过元素分析、比表面积分析仪、扫描电镜(SEM)和红外光谱(FTIR)等分析方法对所制备的生物炭进行表征。探究了溶液初始pH、干扰离子强度和初始吸附剂投加量等因素对3种生物炭吸附Pb~(2+)和Cd~(2+)作用的影响,讨论了吸附动力学特性及吸附等温特性。结果表明:不同生物质制备出的3种生物炭的碱性和灰分含量由高到低依次为沙柳秸秆生物炭(SWB)、玉米秸秆生物炭(CB)和水稻秸秆生物炭(SB),FTIR检测结果显示3种生物炭表面均含有大量含氧官能团;当溶液pH为3~6时,3种生物炭对Pb~(2+)和Cd~(2+)吸附量随pH值的增加而升高,对Pb~(2+)的吸附效果随着溶液中离子强度的增强而降低,而SWB对Cd~(2+)的吸附效果随离子强度的增加而增加;3种生物炭对Pb~(2+)和Cd~(2+)的吸附过程符合准二级动力学模型,R~2均大于0.99,表明生物炭吸附速率主要由化学吸附机制决定;SWB、SB和CB对Cd~(2+)的吸附过程既符合Langmuir模型,又符合Freundlich模型,而生物炭对Pb~(2+)的吸附过程更适合Langmuir等温模型,表明生物炭对Pb~(2+)的吸附近似单分子层吸附,而对Cd~(2+)的吸附存在多分子层吸附。  相似文献   

9.
本研究考察了卡马西平(CBZ)在9种不同条件(裂解温度200、300、500℃,无酸,HCI和HCI-HF)处理的生物炭上的吸附动力学,分别应用拟一级、拟二级和双室一级3种动力学模型对实验数据进行拟合.研究结果表明,双室一级动力学模型对吸附动力学提供了更精确的描述.裂解温度和酸处理对CBZ的吸附动力学有显著影响,具体表现为不同酸洗导致矿物含量发生显著变化,矿物对生物炭吸附CBZ的快室吸附单元起主要作用,生物炭内部的芳香环随生物炭的升高而更加致密,生物炭内部的芳香环结构主要贡献于慢室吸附单元.生物炭的矿物组分一方面屏蔽了有机质上的一些吸附点位,另一方面矿物自身可以有效地吸附污染物,酸洗去矿物对生物炭吸附污染物的表观影响可能取决于两个方面的平衡.  相似文献   

10.
芦苇生物炭对水中铅的吸附特性   总被引:1,自引:0,他引:1  
将芦苇秸秆在500℃下缺氧热解4 h制备成生物炭.采用批量平衡实验法,考察溶液p H值、生物炭投加量、溶液离子强度以及生物炭灰分对芦苇生物炭吸附水中Pb~(2+)的影响.结果表明:溶液p H值在2.0—5.5范围内,芦苇生物炭对Pb~(2+)的吸附量随着p H值升高而增加;生物炭最佳投加量为1.8 g·L-1,Pb~(2+)的去除率为96.6%;溶液中Na~+、Ca~(2+)的存在会抑制芦苇生物炭对Pb~(2+)的吸附;去除灰分后的生物炭对Pb~(2+)的吸附量降低.不同温度下的吸附等温线更符合Langmiur方程.在283、298、313 K下的最大实际吸附量分别为21.89、24.06、24.95 mg·g~(-1).热力学研究结果为ΔGθ0、ΔHθ0和ΔSθ0,说明该吸附是自发、熵增的吸热过程.吸附动力学线性拟合结果更符合假二级动力学方程.芦苇生物炭吸附前后的红外光谱和XRD衍射谱图分析表明吸附过程存在离子交换和阳离子-π作用.去除灰分的生物炭吸附Pb~(2+)后溶液中Na~+、K~+、Ca~(2+)、Mg~(2+)浓度升高,表明离子交换是主要吸附机制.  相似文献   

11.
以生活中常见的丝瓜络为原材料,在氮气保护和不同温度(600、700、800、900℃)的条件下热解制备了三维多孔丝瓜络生物炭(LSBC600、LSBC700、LSBC800、LSBC900)。表征了丝瓜络生物炭的理化性质,通过动力学吸附实验和等温线吸附实验研究了不同热解温度条件下制备的丝瓜络生物炭对菲的吸附动力学特征和吸附等温线特征,探讨了可能的吸附机理,评估三维多孔生物炭对菲的去除能力,为水生态系统保护和饮用水安全提供科学依据。结果表明,热解温度会影响生物炭的表面官能团组成,进而影响其芳香性。丝瓜络生物炭呈现多管束堆叠的三维多孔结构,随着热解温度的升高,挥发性物质减少,丝瓜络生物炭的表面变得粗糙,比表面积增大,芳香结构增加;LSBC900的比表面积达到了467 m2·g-1。吸附动力学结果说明,丝瓜络生物炭对菲的吸附是复杂和多阶段的,主导吸附速率的是液膜扩散过程,其次是颗粒内扩散过程。在600-900℃范围内,随着热解温度的升高,丝瓜络生物炭对菲的平衡吸附量升高,吸附速率加快。吸附等温线结果说明,热解温度升高可以提高丝瓜络生物炭对菲的吸附容...  相似文献   

12.
生物炭作为吸附剂已广泛应用于重金属及磷污染废水处理,成为环境科学领域研究的前沿热点。沉水植物量大源广,可作为生物炭的制备原料,但其对Cr~(6+)和磷的去除研究相对缺乏。选取常见的沉水植物(眼子菜、苦草和金鱼藻),在350、450和600℃温度下热解,研究其在不同初始pH值与平衡时间下对Cr~(6+)和磷的吸附性能。结果表明:酸性条件更有利于沉水植物生物炭对Cr~(6+)和磷的吸附,其中350℃条件下制备的金鱼藻生物炭和眼子菜生物炭对Cr~(6+)和磷的吸附量最大,分别为0.094 2(pH=4)和0.338 1 mmol·g-1(pH=6)。沉水植物生物炭对Cr~(6+)和磷的吸附遵循准二级动力学模型,表明吸附过程由化学吸附占主导地位。沉水植物生物炭富含羧基、羟基等含氧官能团,除450℃条件下制备的苦草生物炭零电荷点(pHzpc)是6以外,其余样品pHzpc均为8。吸附Cr~(6+)和磷后,生物炭表面变得更粗糙,褶皱明显并出现亮斑,Cr~(6+)和磷含量明显增加。沉水植物生物炭因其独特的物理化学结构,可制备多孔炭用于污染物吸附等领域。  相似文献   

13.
啤酒酵母去除水中Cd~(2+)和Cu~(2+)的吸附动力学和解吸特性   总被引:2,自引:0,他引:2  
生物吸附法是一种经济有效的处理大规模低浓度重金属废水的生物技术,其中啤酒酵母(Saccharomyces cerevisiae)是具有实用潜力的生物吸附剂.通过以实验室培养的啤酒酵母作生物吸附剂,研究了啤酒酵母对Cu~(2+)、Cd~(2+)吸附的动力学解吸特性,结果表明:非固定化啤酒酵母对重金属的吸附是一个快速的、不依赖于生物代谢的过程,经过2h后Cd~(2+)达吸附平衡,Cu~(2+)为3 h.它们的吸附动力学过程均可用Elovich方程、抛物线扩散方程、双常数方程、二级动力学方程、Langmuir动力学方程来拟合,对Cd~(2+)来说,以二级动力学方程的拟合效果最佳,Cu~(2+)以Elovich方程最佳.固定化啤酒酵母吸附Cd~(2+)的平衡时间为60 h,Cu~(2+)为24 h,吸附速率大大降低.固定化啤酒酵母对重金属的吸附动力学也可用Elovich方程、抛物线扩散方程、双常数方程、二级动力学方程、Langmuir动力学方程拟合,但Cd~(2+)以Elovich方程最佳,Cu~(2+)以Langmuir动力学方程最佳.固定化碱处理啤酒酵母可用HC1作为解吸剂进行解吸,使吸附剂得到再生,具有较大的开发应用潜力.  相似文献   

14.
以控制除草剂污染为目标,对水稻秸秆进行低温(200和350℃)限氧热解制备生物炭,考察其对异丙甲草胺的吸附和缓释作用。结果表明,热解温度为350℃时制备的生物炭(D350)比表面积为23.2 m2·g-1,对异丙甲草胺的吸附能力明显高于秸秆原料,与200℃时制备的生物炭(D200)接近。但是,D350生物炭对异丙甲草胺的表面吸附作用更强,且脱附滞后指数(5.35)明显高于D200生物炭(2.07),脱附滞后效应更明显。以生物炭为载体制备的颗粒制剂可延缓除草剂释放,水中释放动力学模型参数nr值接近Fickian扩散模型的0.50,且释放50%活性成分所需时间(t50)与脱附滞后指数呈正相关。  相似文献   

15.
农业废弃物资源化利用和无害化处理是实现农业可持续发展和发展循环经济的有效途径,对薏仁米(Semen Coicis)秸秆制备生物炭吸附剂,实现有机固体废弃物资源化利用,解决重金属废水处理难题,以薏仁米秸秆为原料,采用快速热解法制备生物炭。为探明不同温度下制备的薏仁米秸秆生物炭对重金属Hg~(2+)的去除机制及机理,并用扫描电子镜-能谱分析法(SEM-EDS)、傅立叶变换红外光谱法(FT-IR)、氮吸附法(BET)、X射线光电子能谱法(XPS)脱附对制备的生物炭进行了表征,研究其对水中Hg~(2+)的吸附特性及机制。通过结果表明,随裂解温度的升高,生物炭的孔径尺寸逐渐增大,表面极性官能团逐渐减少,比表面积、孔隙容积呈现先增加后减小的趋势。薏仁米秸秆生物炭具有丰富的蜂窝状孔结构和-COOH、-OH等表面活性基团。生物炭对质量浓度小于100 mg·L~(-1)溶液中Hg~(2+)的去除率大于92%,且生物炭对Hg~(2+)的去除率主要发生在前1 h吸附时间内,然后趋于平衡;随添加量的增加,生物炭对Hg~(2+)去除效率呈现先增加后减小的趋势,含量为2 g·L~(-1)时生物炭对水中Hg~(2+)的去除效率最高,且700℃制备的生物炭对Hg~(2+)的去除效率最高,最大吸附量可达235.3mg·g~(-1)。吸附平衡等温线和吸附动力学结果表明,薏仁米秸秆生物炭对Hg~(2+)的吸附过程符合Langmuir等温吸附模型和准二级动力学吸附模型,其对Hg~(2+)的吸附为单层吸附;结合X射线光电子能谱和立叶变换红外光谱,吸附作用机制主要以共沉淀和表面络合为主,Hg-π非共价相互作用为辅的形式结合机理。  相似文献   

16.
为提高生物炭对水中Cd~(2+)的吸附去除性能,以BC1和BC2 2种稻壳生物炭为基础材料,分别采用NaOH和FeCl_3溶液制备得到NBC1和NBC2以及FBC1和FBC2改性稻壳生物炭,并通过吸附动力学和等温吸附实验研究6种生物炭对水中Cd~(2+)的吸附性能。结果表明,对于50 mg·L~(-1) Cd~(2+)溶液,当生物炭投加量为1 g·L~(-1)时,BC1、BC2对Cd~(2+)的吸附量分别为14.76和13.72 mg·g~(-1),NBC1、NBC2对Cd~(2+)的吸附量分别为未改性稻壳生物炭的3.26和2.47倍,而FBC1、FBC2对Cd~(2+)的吸附量则仅为未改性稻壳生物炭的1.03和0.74倍,NaOH改性稻壳生物炭能显著提高稻壳生物炭对Cd~(2+)的吸附能力,而FeCl_3改性对稻壳生物炭吸附Cd~(2+)的能力影响不大。稻壳生物炭对Cd~(2+)的吸附符合准二级动力学和Langmuir模型,为单分子层吸附过程;NBC1和NBC2对Cd~(2+)的最大吸附量(131.58和98.04 mg·g~(-1))明显高于FBC1和FBC2(30.30和23.26 mg·g~(-1))。与FeCl_3改性相比,NaOH改性显著增强稻壳生物炭对Cd~(2+)的吸附能力,其主要原因为NaOH使生物炭表面碱性含氧官能团增多,从而增强了生物炭与Cd~(2+)之间的离子交换和沉淀作用。  相似文献   

17.
秸秆生物质炭在旱作条件下可通过络合重金属阳离子、提高土壤pH值等途径降低重金属活性和有效性,但是淹水条件下生物质炭对重金属形态的影响研究较少。以30 g·kg~(-1)施用量将不同温度条件下制备的油菜和花生秸秆生物质炭及商品活性炭添加到广东徐闻砖红壤中,并添加5 mmol·kg~(-1)Cu(NO_3)_2和20 g·kg~(-1)葡萄糖,淹水培养49 d,采用连续提取法分级提取不同形态Cu~(2+)并研究其动态变化。结果表明,添加活性炭、400℃条件下制备的油菜秸秆炭和300、400、500℃条件下制备的花生秸秆炭后,淹水培养初期土壤溶液pH值比对照组明显增加,酸溶态Cu~(2+)含量显著降低,还原态和氧化态Cu~(2+)含量有所升高。随淹水时间增加,土壤pH值逐渐降低,导致生物质炭处理土壤中酸溶态Cu~(2+)含量显著升高,生物质炭对Cu~(2+)的钝化效果逐渐减弱并消失,还原态和氧化态Cu~(2+)含量降低。在49 d培养时间内残渣态Cu~(2+)含量变化不大。淹水条件下生物质炭对砖红壤中Cu~(2+)的钝化效果并不持久,甚至由于生物质炭中有机物质分解而产生更多有机酸,导致淹水后期生物质炭处理砖红壤pH值较对照低,反而提高了Cu~(2+)的活性和生物有效性。  相似文献   

18.
富磷污泥生物炭去除水中Pb(Ⅱ)的特性研究   总被引:9,自引:0,他引:9  
丁文川  杜勇  曾晓岚  刘任露 《环境化学》2012,31(9):1375-1380
以城市污水厂富磷剩余污泥为研究对象,考察高温热解制备生物炭吸附剂对水中Pb(Ⅱ)的去除效果.研究表明,随着热解温度升高,制备的生物炭对Pb(Ⅱ)的吸附能力增强;在相同热解温度下,生污泥生物炭对Pb(Ⅱ)的吸附能力比消化污泥生物炭大.采用700℃热解1 h制备生污泥生物炭以研究对Pb(Ⅱ)吸附的影响因素,结果显示:吸附180 min达到吸附平衡;富磷污泥生物炭对Pb(Ⅱ)的去除率随pH增加而升高;生物炭投加量增加,对Pb(Ⅱ)去除率上升,而单位吸附容量迅速减小.污泥生物炭对Pb(Ⅱ)的吸附符合准二级反应动力学,Langmuir模型比Freundlich模型能更好地拟合等温吸附线.在pH 5.0、吸附时间3 h、生物炭投加量20 g.L-1条件下,对Pb(Ⅱ)的最大吸附量为34.5 mg.g-1,表明富磷污泥生物炭可以作为一种廉价的吸附剂.  相似文献   

19.
不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性   总被引:17,自引:0,他引:17  
选择由小麦秸秆、玉米秸秆和花生壳经350~500℃热裂解制成的生物质炭,研究生物黑炭对水溶液中Cd2+和Pb2+的吸附特性,分析了pH值、吸附时间、溶液初始质量浓度、生物质炭粒径和投加量对吸附效果的影响。结果表明:生物质炭对Cd2+和Pb2+的吸附约10 min即达平衡;3种生物质炭对Cd2+和Pb2+的等温吸附均可用Langmuir方程和Freundlich方程拟合,玉米秸秆炭对Cd2+和Pb2+的最大吸附量远大于小麦秸秆炭和花生壳炭;在生物黑炭投加量为150 mg(6 g.L-1)时,3种生物黑炭对溶液Cd2+的去除率均在90%以上,玉米秸秆炭对溶液Pb2+的去除率达90.30%,而小麦秸秆炭和花生壳炭的去除率仅为52%和47%,玉米秸秆炭有望成为处理重金属污染废水的新型吸附材料。  相似文献   

20.
生物炭中溶解性有机质对污染物环境行为的影响   总被引:2,自引:0,他引:2  
生物炭的广阔应用前景吸引了研究者的广泛关注。生物炭中具有显著流动性的溶解性有机质(Biochar-derived dissolved organic matter,BDOM)作为一种高效的吸附载体,对污染物迁移的影响显著,是了解生物炭环境效应的关键。然而,原料来源及热解温度与BDOM的特性之间的关联性,以及BDOM与污染物相互作用的机制尚未明确。因此,文章通过综述原料及热解温度对BDOM特性的影响,以明确BDOM影响污染物环境行为机制的研究现状。有关研究表明:(1)生物质原料中木质素含量越高,BDOM C含量越高,官能团种类更加丰富,芳香性更强,而产率则越低;(2)随热解温度的升高,BDOM中C含量增加、芳香性增强,而产率及含氧官能团种类降低;(3)BDOM与疏水性有机污染物形成致密的类胶体结构,使疏水性有机污染物的溶解度提高,从而使疏水性有机污染物更容易被降解;(4)BDOM通过增加土壤中溶解性有机质的含量,从而形成新的吸附位点(如羧基官能团),以促进土壤对重金属或有机污染物的固持;(5)BDOM与重金属发生络合或氧化还原作用,影响重金属形态,从而改变土壤中重金属的毒性和生物有效性。该文可为全面评估生物炭在土壤污染修复应用中的功能提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号