首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Standard laboratory toxicity tests assess the physiological responses of individual organisms to exposure to toxic substances under controlled conditions. Time and space restrictions often prevent the assessment of population-level responses to a toxic substance. Contaminants can affect various biological functions (e.g. growth, fecundity or behavior), which may alter different demographic traits, leading to population-level impacts. In this study, immune suppression, reproductive dysfunction and somatic growth impairment were examined using life history matrix models for coho salmon (Oncorhynchus kisutch), sockeye salmon (Oncorhynchus nerka) and chinook salmon (Oncorhynchus tshawytscha). Our intent was to gauge the relative magnitude of response to toxic effects among species and between life history stages, not provide a specific estimate of population growth rate or abundance. Effects due to immune suppression were modeled as reductions in age-specific survival. Toxic impacts on reproductive function were modeled as a 10% reduction in reproductive contribution for all reproductively mature age groups. Model runs that examined the effect of somatic growth reduction on population parameters incorporated both survival and reproductive impacts. All impacts were modeled as 10% reductions in the affected population demographic parameters. First-year survival and reproductive impacts produced similar population growth rates (λ), but resulted in different sensitivity and stable age distributions. Modeled somatic growth reduction produced additive effects on survival and reproduction. Toxic stressors producing similar changes in λ did not necessarily produce similar changes in the age distributions. Sensitivity and elasticity analyses demonstrated that changes to the first-year survival rate produced the greatest per-unit effect on λ for each species. Alteration in abundance of mature females also strongly influenced λ. Differences observed between species showed that the number of reproductive ages and time to reproductive maturity were important components for population-level responses. These results emphasize the importance of linking toxicity responses at low concentrations to the demographic traits they affect, and help to highlight the toxicity tests that are more suitable for assessing impacts on the focal species. Additionally, life history modeling is a useful tool for developing testable hypotheses regarding impacts on specific populations as well as for conducting comparisons between populations.  相似文献   

2.
The cost of reproduction can generate covariation between demographic rates that can potentially influence demography and population dynamics in long-lived iteroparous species. However, there has been relatively little work linking the survival cost of reproduction and population dynamics. The apparent scarcity of information on this important link is potentially due to covariation between vital rates, which can substantially influence fluctuations in population size. In this paper we examine the opportunity for survival costs of reproduction to leave a dynamic signature using a simulation model based broadly on an ungulate life history. We find that an increase in the cost delays the onset of reproduction and reduces reproductive rates of young, but not of prime-age, females. Accordingly, the number of offspring produced declines and the interval between reproductive events increases among young females experiencing high cost. These effects are translated to an age structure skewed toward young ages and reduced population density. These results suggest that, by delaying reproduction when conditions deteriorate, females protect their survival during the critical first three years of life, after which the negative effect of reproduction on survival declines. Unless conditions for reproduction are severe, it is not profitable to delay reproduction beyond age 3 years due to the high risk of death before having a chance to reproduce. We also demonstrate that lack of adjustment of reproductive strategies to elevated levels of the cost of reproduction, for example due to rapid changes in environmental conditions, results in lower average density and longevity compared to females that have sufficient time to adjust to changes in the cost. This suggests that even moderate costs of reproduction may have a major negative effect on population dynamics of ungulates.  相似文献   

3.
Parasitized animals may alter their life histories to minimize the costs of parasitism. Organisms are predicted to decrease investment in current reproduction when parasitism has the greatest impact on current reproductive ability. In contrast, if parasitism decreases residual reproductive value, hosts should increase current reproductive investment, referred to as fecundity compensation or terminal investment. In mammalian hosts, parasitic infection most often leads to reductions in current host reproduction, perhaps attributable to the emphasis on parasites that are unlikely to impact the host’s residual reproductive value. In this study, the life history response of a rodent, Peromyscus maniculatus, to infection with a parasite that should strongly impact the residual reproductive value of its host (Schistosomatium douthitti, Trematoda) was examined. Infection decreased survival for hosts exposed to a high dose of parasites and was chronic in survivors, confirming that infection had strong impacts for the residual reproductive value of the host. As predicted, infected mice increased their reproductive output, producing litters of greater mass due to heavier offspring. However, this increased output was observed after a greater delay to begin breeding in infected mice and was not observed in animals that suffered early mortality. The deer mouse S. douthitti system may provide a rare example of fecundity compensation in mammals.  相似文献   

4.
Edwards KF  Stachowicz JJ 《Ecology》2010,91(11):3146-3152
For competing species limited by one or few resources, diversity is thought to be maintained by trade-offs that allow niche differentiation without resource partitioning. However, few studies have quantified multiple key traits for each species in a guild and shown that trade-offs among these traits apply across the guild. Here we document strong bivariate and multivariate relationships among growth rate, fecundity, longevity, and overgrowth ability for six co-occurring colonial invertebrates. We find that all four of these traits are constrained to a single "fast-slow" niche axis that mechanistically relates life history variation to a colonization-competition trade-off. The location of species on this axis strongly predicts the timing of their peak abundance during succession. We also find that species closer to each other on the fast-slow axis are more likely to differ in reproductive phenology, suggesting a secondary dimension of niche differentiation for otherwise similar species.  相似文献   

5.
The allocation to growth, defense and reproduction varies in social insects within a species' life cycle and between species. A life cycle model (Oster and Wilson 1978) generally failed to predict caste allocation in small litter-nesting colonies of Neotropical Pheidole. Two of its assumptions were often invalid: food was unlikely to be limiting in four of five populations, and sexual biomass production accelerated, not decelerated, with colony size in three of five populations. One of five Pheidole populations studied had higher caste ratios (soldiers /workers) in reproductive colonies as predicted, and in no species did caste functions conform to predictions. We also adapted three models from plant defense theory to study between-species patterns of caste allocation. Among 12 litter Pheidole the amount of sterile biomass devoted to soldiers varied from 18 to 62%. Queen size, growth rate, and soldier investment positively covaried. Only one model, the cost of replacement hypothesis (McKey 1979), correctly predicted that species with costly female alates invest more in defense. The two hypotheses linking apparency to defense may also be valid if fast-growing colonies are more likely to attract the attention of predators.  相似文献   

6.
In polygynous species, males devote considerable effort to reproduction during the rut. Both the number of females in the mating group and the ratio of sexually mature males to sexually mature females [adult sex ratio (ASR)] are expected to affect the amount of effort a male devotes to reproductive activities. We predicted the reproductive effort of dominant male reindeer, measured as relative mass loss, proportions of active reproductive behaviors, and frequencies of agonistic behaviors would (1) increase with an increasing number of females in the mating group and eventually level off, and (2) exhibit a dome shape with respect to ASR in the mating group. We tested these predictions using 12 years of data collected from semi-domesticated reindeer in northern Finland. We found a positive relationship between relative mass loss and the mean number of females in the mating group for mature, but not young males. The relationship between the proportion of active reproductive behaviors performed by mature males and the mean number of females in the group was quadratic while agonistic behaviors of mature males increased with the increasing female group size. We also found that active reproductive behaviors decreased with a rising mating group ASR for mature males; whereas, young males performed more agonistic behaviors as group ASR increased. Our results point to age-specific patterns of mass loss and activity during the mating season. They also indicate that both the number of females and ASR in the mating group are important factors in determining the level of reproductive effort of dominant male reindeer.  相似文献   

7.
Bet hedging in a guild of desert annuals   总被引:3,自引:0,他引:3  
Venable DL 《Ecology》2007,88(5):1086-1090
Evolutionary bet hedging encapsulates the counterintuitive idea that organisms evolve traits that reduce short-term reproductive success in favor of longer-term risk reduction. It has been widely investigated theoretically, and many putative examples have been cited including practical ones such as the dormancy involved in microbe and weed persistence. However, long-term data on demographic variation from the actual evolutionarily relevant environments have been unavailable to test for its mechanistic relationship to alleged bet hedging traits. I report an association between delayed germination (a bet hedging trait) and risk using a 22-year data set on demographic variation for 10 species of desert annual plants. Species with greater variation in reproductive success (per capita survival from germination to reproduction x per capita fecundity of survivors) were found to have lower average germination fractions. This provides a definitive test using realistic data on demographic variance that confirms the life history prediction for bet hedging. I also showed that the species with greater long-term demographic variation tended to be the ones with greater sensitivity of reproductive success to variation among years in growing-season precipitation.  相似文献   

8.
Nonacs P 《Ecology》2006,87(9):2143-2147
Ants are social and are haplodiploid. This combination may allow the evolution of a variety of unusual genetic pathways to achieve reproductive success. These include hybridizing across species, differential use of sperm to create a hybrid worker population, and reproductively isolated gene pools that depend on each other for their survival. Although there are demonstrable costs for colony development and reproduction, these phenomena may nevertheless be relatively common in nature. The specific ecological advantages that favor the evolution of these reproductive modes remain to be discovered.  相似文献   

9.
While breeding synchrony among conspecifics is increasingly well understood with regards to the reproductive success of vertebrate and invertebrate taxa, the occurrence of simultaneous multispecies breeding events remains intriguing. The fairly recent discovery of mass annual spawnings in reef corals has provided a first glimpse at putative strategies of reproductive isolation during such events. However, the mechanisms and advantages of same-day heterospecific breeding are still poorly understood and have not yet been investigated in non-coral taxa with different life history strategies. In an effort to bridge this gap, we investigated spawning periodicity and synchrony among 26 sympatric species of free-spawning, capsule-laying, and brood-protecting macroinvertebrates belonging to six different phyla. Twenty-four of these species released gametes or larvae between early March and late April. We analyzed the events over fine temporal scales to test the hypothesis that breeding activities were not random in time or relative to each other. We found that the two main reproductive pulses followed a lunar periodicity and that consistent species- and gender-specific modulations in the timing of spawning occurred during same-day episodes involving up to six free-spawning species. Mass spawning accounts from the literature were reviewed and compared. This work suggests that many species participate in synchronous heterospecific spawning events either because they respond to the same environmental cues or rely on cross-cueing and that reproductive isolation is favored by species-specific circadian patterns, spawning behaviors and cross-gender signaling.  相似文献   

10.
Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population‐specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species‐specific traits. In our method, we used models of population dynamics across a range of life‐history traits related to species’ body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species‐ and context‐specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context‐specific estimates of population viability for which only limited data are available. It enables a first estimation of species‐specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large‐scale and multispecies conservation assessments and planning.  相似文献   

11.
Meerkats live in co-operatively breeding familial groups in which reproduction is monopolised by a dominant pair of breeders. Offspring of the breeders are behaviourally subordinate, and typically remain in their natal group as sexually mature, non-breeding helpers. In this study, we investigated the proximate factors limiting subordinate reproduction. Evidence for reproductive suppression by dominants was investigated by comparing life history, behaviour and hormonal profiles of dominants and subordinates. Baseline levels of plasma luteinising hormone (LH) were significantly higher in dominant than in subordinate females. However, following an exogenous injection of gonadotrophin-releasing hormone (GnRH), both categories had comparable concentrations of circulating LH. There were no significant differences in pre- or post-GnRH challenge LH levels in dominant or subordinate males. Reproduction in both dominant and subordinate females rarely occurred in the absence of unrelated males. Given that groups typically comprise parents and offspring, lack of suitable mates emerged as the primary constraint on subordinate reproduction. When this constraint was removed, subordinates typically bred but at a lower rate than dominants. This difference in reproduction may be attributed to intrasexual competition manifested through direct interference by dominant females through subordinate evictions, infanticide and the abandoning of subordinate litters. We argue that differences in reproductive regulation within mammalian co-operative breeding systems may be explained by differences in the mating strategy (inbreeding versus outbreeding) and the probability that subordinates in obligate outbreeding species will encounter unrelated opposite-sex partners. Received: 19 April 2000 / Accepted: 17 July 2000  相似文献   

12.
Our understanding of the reproductive biology of corals from the Mexican southeastern Pacific is limited, and consequently, the role of reproduction in structuring coral communities is unclear. As a first attempt to understand the importance of sexual reproduction in structuring and maintaining of the coral communities from this region, we documented the reproductive cycles over 2 years (2003–2004) in three main reef-building corals species in the region. Pocillopora damicornis was shown to be hermaphroditic with asynchronous gamete development observed only in 2004; P. gigantea was characterized as both gonochoric and cosexually hermaphroditic. Absence of mature gametes was documented in both species, and an observation may be attributed to the 2003 El Niño Southern Oscillation event, which may have inhibited reproductive maturation via thermal stress. Porites panamensis was gonochoric with asynchronous development, and planulae were generally brooded. The presence of mature gametes and planulae in P. panamensis polyps suggests that this species is an important contributor to local and, likely, regional recruitment of this species. Further research should seek to identify important source populations for these coral recruits and document the exchange of larvae between coral populations of the Mexican Pacific.  相似文献   

13.
Socioecological theory predicts that the distribution of fertile females in space and time is the major determinant of male spacing behavior and mating strategies. Using a small nocturnal Malagasy primate, the gray mouse lemur (Microcebus murinus), we determined the spatiotemporal distribution of estrous females during the brief annual mating season to examine the predictive power of the socioecological model for male mating strategies. Mouse lemurs are particularly interesting in this respect because this polygynous species is characterized by seasonal reproduction, seasonally reversed sexual dimorphism, and relatively large testes. All resident animals in our 8-ha study area, a total of 30 adult males and 27 adult females, were individually marked and regularly recaptured to determine female reproductive status and to obtain home range data. We found that the mating season is limited to 4 weeks following female emergence from hibernation. Only 3-9 females could have synchronized estruses during a given week, indicating a moderately high male monopolization potential. However, receptive females were not spatially clumped and male ranges overlapped with those of many other rivals. Therefore, we suggest that individual powerful males may be unable to defend exclusive permanent access to receptive females because of prohibitive costs of range defense resulting from the strongly male-biased operational sex ratio and the corresponding intruder pressure. Our general conclusions are (1) that the socioecological model provides a useful heuristic framework for the study of mating systems, but that (2) it does not specify the degree of spatiotemporal clumping of receptive females at which male mating strategies switch among mate guarding, spatial exclusion of rivals, and roaming, and that (3) the operational sex ratio can have profound effects on male mating strategies as well.  相似文献   

14.
Summary Colony structure and reproductive investment were studied in a population of Myrmica punctiventris. This species undergoes a seasonal cycle of polydomy. A colony overwinters in entirety but fractionates into two or more nest sites during the active season and then coalesces in the fall. Colony boundaries were determined by integrating data on spatial pattern, behavioral compatability, and genetic relatedness as revealed by protein electrophoresis. Colonies contained at most one queen. Consequently, a colony consisted of one queenright nest and one or more queenless nests. Furthermore, estimates of relatedness were fully consistent, with queens being single mated. M. punctiventris therefore has a colony genetic structure that conforms to the classical explanation of the maintenance of worker sterility by kin selection. Kin selection theory predicts that workers would favor a female-biased allocation ratio while selection on queens would favor equal investment in males and females. We predicted that in polydomous populations, queenless nests would rear more female reproductives from diploid larvae than queenright nests. There was a significant difference between queenright and queenless nests in sexual allocation; queenless nests allocated energy to reproductive females whereas queenright nests did not. At neither the nest nor colony levels did worker number limit sexual production. We also found that nests tended to rear either males or females but when colony reproduction was summed over nests, the sexes were more equally represented. The difference in allocation ratios between queenless and queenright nests was attributed solely to queen presence/absence. Our work shows that polydomy provides an opportunity for workers to evade queen control and thereby to sexualize brood.Offprint requests to: L.E. Snyder at the current address  相似文献   

15.
The threat posed by exotic organisms to native systems has led to extensive research on exotic invaders, yet management of invasives has progressed relatively slowly. This is partly due to poor understanding of how exotic species management influences native organisms. To address this shortfall, we experimentally evaluated the efficacy of an invasives management tool for restoring native deer mouse (Peromyscus maniculatus) populations elevated by exotic species. The exotic insects, Urophora spp., were introduced in North America for biological control of the Eurasian invader, spotted knapweed (Centaurea maculosa), but instead of controlling C. maculosa, Urophora have become an important food resource that doubles P. maniculatus populations, with substantial indirect effects on other organisms. We hypothesized that herbicide suppression of Urophora's host plant would reduce the Urophora food resource and restore P. maniculatus populations to natural levels. Prior to treatment, mouse populations did not differ between controls and treatments, but following treatment, P. maniculatus were half as abundant where treatment reduced Urophora. Peromyscus maniculatus is insensitive to direct herbicide effects, and herbicide-induced habitat changes could not explain the P. maniculatus response. Treatment-induced reductions of the Urophora food resource offered the most parsimonious explanation for the mouse response: Multistate mark-recapture models indicated that P. maniculatus survival declined where Urophora were removed, and survival rates were more correlated with variation in population size than movement rates. Other demographic and reproductive parameters (sex ratios, reproductive status, pregnancy rates, and juvenile recruitment) were unaffected by treatment. These results suggest the Urophora biocontrol elevated P. maniculatus survival, and the herbicide treatment restored mouse populations by removing the exotic food and reducing survival. This work illustrates the importance of mechanistic understandings of community and population ecology for improving invasive species management.  相似文献   

16.
Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae.  相似文献   

17.
Parasites prevent summer breeding in white-footed mice, Peromyscus leucopus   总被引:1,自引:0,他引:1  
Vandegrift KJ  Raffel TR  Hudson PJ 《Ecology》2008,89(8):2251-2258
Food and parasites can independently play a role in destabilizing population fluctuations of animals, and yet, more than 50 years ago, David Lack proposed that these two factors should act in concert. We examined the role of these factors on the vital rates of free-living white-footed mice (Peromyscus leucopus) over the summer and autumn months. We used a replicated factorial experiment in which deer exclosures doubled acorn availability and anthelmintic application reduced gastrointestinal helminths. Specifically, we wanted to know if either factor or an interaction between the two accounted for the midsummer breeding hiatus observed in this species. We found no influence of habitat quality on mouse breeding, vital rates, or demography; however, anthelmintic treatment resulted in mice continuing to reproduce during the hiatus at the same rate as previously, and they also exhibited increased body condition, growth rate, and survival. These results provide evidence that gastrointestinal helminths reduce P. leucopus reproductive output in central Pennsylvania, and these effects on reproduction could play a role in the unstable dynamics of small mammals.  相似文献   

18.
The reproductive status of the holothuroid species Isostichopus badionotus (Selenka, 1867) and Holothuria mexicana (Ludwig, 1875) was studied over 16 months in Bocas del Toro (Panama), from November 1999 to February 2001. Sexual reproduction was evaluated by the gonad index method, and by histology of gonad development. In addition, population structure was assessed based on sex ratio, minimum reproductive size, and length and weight distributions of males and females. The sex ratio in both species was 1:1, with a unimodal population distribution composed mainly of mature individuals. The minimum reproductive length and weight were 13-20 cm and 150 g, respectively, for both species, although reproductive individuals 10 cm in length were also found. A consistently higher gonad index was observed in H. mexicana, due to a high proportion of mature females and males and high gonad indices in most monthly samples. Gametogenesis and spawning patterns seemed to occur throughout the year, with periods of enhanced activity. Two periods of maximum reproductive activity were tentatively identified: July-November for I. badionotus and February-July for H. mexicana, but neither species had a single, sharply defined annual spawning event. Further work on these exploited holothuroids should examine the relationships between reproduction and environmental factors and between reproductive status and recruitment.  相似文献   

19.
The reproductive cycle of Limacina retroversa in the Argentine Sea was studied by gonadal analysis. Samples were collected in 1978–1979. The relation between gonadal maturity and size is dependent on the season and the geographical area. Evidence of in situ reproduction was found at the beginning of spring and at the end of summer, indicating that the life cycle in the area consists of two generations per year. In accordance with the season of birth, both generations develop different strategies. Individuals born in spring mature early and reproduce before the end of summer. The offspring born in summer survive the cold season without reaching sexual maturity and reproduce in the following spring.  相似文献   

20.
Hakes AS  Cronin JT 《Ecology》2012,93(5):1059-1070
Despite considerable research on plant defenses, we know very little about how temporal changes in the environment may influence resistance and tolerance levels, or the costs and benefits of these defense strategies for long-lived plant species. We hypothesized that, in successional habitats, predictable environmental changes should favor strong plasticity in defense phenotypes and that the costs, benefits, and levels of tolerance and resistance will change with environmental context. Using a widely distributed, old-field perennial, late goldenrod (Solidago altissima), we conducted a field experiment to test these predictions. We planted goldenrod genets exhibiting varying levels of resistance and tolerance into three early-successional and three late-successional fields (approximately three and 15 years in age, respectively) and experimentally measured resistance and tolerance levels and their associated costs and selection coefficients. We found a significant effect of successional stage but no effect of genotype or stage-genotype interaction on defense levels. Genets planted in early-successional fields appeared to be more resistant and less tolerant to herbivory than those same genets planted in late-successional fields. There were significant trade-offs between resistance and tolerance in early-successional fields but not in late-successional fields. Each late-successional field exhibited a significant cost or selection gradient for resistance, but there was no general pattern of resistance costs or selection gradients specific to a successional stage class. In contrast, there was evidence of stage-specific costs of tolerance; late-successional fields exhibited significant costs of tolerance whereas early-successional fields did not. There was no evidence of direct selection for or against tolerance in either stage. Our results suggest that defense phenotypes might change in qualitative ways during succession. High resistance in early stages may be attributed to associational effects of the early-successional community, reducing the probability of damage, and despite a cost of tolerance in late stages, tolerance may be beneficial in mitigating the effects of both herbivory and environmental stresses (i.e., low light availability) that limit fitness in these fields. This study provides experimental evidence that succession can strongly influence defense phenotypes and promote temporal variability in relative resistance and tolerance levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号