首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract: The controversy (  Berger 1990, 1999 ; Wehausen 1999 ) over rapid extinction in bighorn sheep ( Ovis canadensis ) has focused on population size alone as a correlate to persistence time. We report on the persistence and population performance of 24 translocated populations of bighorn sheep. Persistence in these sheep was strongly correlated with larger patch sizes, greater distance to domestic sheep, higher population growth rates, and migratory movements, as well as to larger population sizes. Persistence was also positively correlated with larger average home-range size ( p = 0.058, n = 10 translocated populations) and home-range size of rams ( p = 0.087, n = 8 translocated populations). Greater home-range size and dispersal rates of bighorn sheep were positively correlated to larger patches. We conclude that patch size and thus habitat carrying capacity, not population size per se, is the primary correlate to both population performance and persistence. Because habitat carrying capacity defines the upper limit to population size, clearly the amount of suitable habitat in a patch is ultimately linked to population size. Larger populations (250+ animals) were more likely to recover rapidly to their pre-epizootic survey number following an epizootic ( p = 0.019), although the proportion of the population dying in the epizootic also influenced the probability of recovery ( p = 0.001). Expensive management efforts to restore or increase bighorn sheep populations should focus on large habitat patches located ≥23 km from domestic sheep, and less effort should be expended on populations in isolated, small patches of habitat.  相似文献   

2.
Abstract: Theory and simulation models suggest that small populations are more susceptible to extinction than large populations, yet assessment of this idea has been hampered by lack of an empirical base. I address the problem by asking how long different-sized populations persist and present demographic and weather data spanning up to 70 years for 122 bighorn sheep ( Ovis canadensis ) populations in southwestern North America Analyses reveal that: (1) 100 percent of the populations with fewer than 50 individuals went extinct within 50 years; (2) populations with greater than 100 individuals persisted for up to 70 years; and (3) the rapid loss of populations was not likely to be caused by food shortages, severe weather, predation, or interspecific competition These data suggest that population size is a marker of persistence trajectories and they indicate that local extinction cannot be overcome because 50 individuals, even in the short term, are not a minimum viable population size for bighorn sheep.  相似文献   

3.
Templeton AR  Brazeal H  Neuwald JL 《Ecology》2011,92(9):1736-1747
Habitat fragmentation often arises from human-induced alterations to the matrix that reduce or eliminate dispersal between habitat patches. Elimination of dispersal increases local extinction and decreases recolonization. These phenomena were observed in the eastern collared lizard (Crotaphytus collaris collaris), which lives in the mid-continental highland region of the Ozarks (Missouri, USA) on glades: habitats of exposed bedrock that form desert-like habitats imbedded in a woodland matrix. With the onset of woodland fire suppression, glade habitats degenerated and the woodland matrix was altered to create a strong barrier to dispersal. By 1980, lizard populations in the Ozarks were rapidly going extinct. In response to this decline, some glades were restored by clearing and burning. Starting in 1984, collared lizard populations were translocated onto these restored habitats. The translocated populations persisted but did not colonize nearby glades or disperse among one another. In 1994 prescribed woodland fires were initiated, which unleashed much dispersal and colonizing behavior. Dispersal was highly nonrandom by both intrinsic variables (age, gender) and extrinsic variables (overall demography, glade population sizes, glade areas, landscape features), resulting in different classes of lizards being dominant in creating demographic cohesiveness among glades, colonizing new glades on a mountain, and colonizing new mountain systems. A dramatic transition was documented from isolated fragments, to a nonequilibrium colonizing metapopulation, and finally to a stable metapopulation. This transition is characterized by the convergence of rates of extinction and recolonization and a major alteration of dispersal probabilities and pattern in going from the nonequilibrium to stable metapopulation states.  相似文献   

4.
Seasonal patterns of climate and vegetation growth are expected to be altered by global warming. In alpine environments, the reproduction of birds and mammals is tightly linked to seasonality; therefore such alterations may have strong repercussions on recruitment. We used the normalized difference vegetation index (NDVI), a satellite-based measurement that correlates strongly with aboveground net primary productivity, to explore how annual variations in the timing of vegetation onset and in the rate of change in primary production during green-up affected juvenile growth and survival of bighorn sheep (Ovis canadensis), Alpine ibex (Capra ibex), and mountain goats (Oreamnos americanus) in four different populations in two continents. We indexed timing of onset of vegetation growth by the integrated NDVI (INDVI) in May. The rate of change in primary production during green-up (early May to early July) was estimated as (1) the maximal slope between any two successive bimonthly NDVI values during this period and (2) the slope in NDVI between early May and early July. The maximal slope in NDVI was negatively correlated with lamb growth and survival in both populations of bighorn sheep, growth of mountain goat kids, and survival of Alpine ibex kids, but not with survival of mountain goat kids. There was no effect of INDVI in May and of the slope in NDVI between early May and early July on juvenile growth and survival for any species. Although rapid changes in NDVI during the green-up period could translate into higher plant productivity, they may also lead to a shorter period of availability of high-quality forage over a large spatial scale, decreasing the opportunity for mountain ungulates to exploit high-quality forage. Our results suggest that attempts to forecast how warmer winters and springs will affect animal population dynamics and life histories in alpine environments should consider factors influencing the rate of changes in primary production during green-up and the timing of vegetation onset.  相似文献   

5.
A key question facing conservation biologists is whether declines in species' distributions are keeping pace with landscape change, or whether current distributions overestimate probabilities of future persistence. We use metapopulations of the marsh fritillary butterfly Euphydryas aurinia in the United Kingdom as a model system to test for extinction debt in a declining species. We derive parameters for a metapopulation model (incidence function model, IFM) using information from a 625-km2 landscape where habitat patch occupancy, colonization, and extinction rates for E. aurinia depend on patch connectivity, area, and quality. We then show that habitat networks in six extant metapopulations in 16-km2 squares were larger, had longer modeled persistence times (using IFM), and higher metapopulation capacity (lambdaM) than six extinct metapopulations. However, there was a > 99% chance that one or more of the six extant metapopulations would go extinct in 100 years in the absence of further habitat loss. For 11 out of 12 networks, minimum areas of habitat needed for 95% persistence of metapopulation simulations after 100 years ranged from 80 to 142 ha (approximately 5-9% of land area), depending on the spatial location of habitat. The area of habitat exceeded the estimated minimum viable metapopulation size (MVM) in only two of the six extant metapopulations, and even then by only 20%. The remaining four extant networks were expected to suffer extinction in 15-126 years. MVM was consistently estimated as approximately 5% of land area based on a sensitivity analysis of IFM parameters and was reduced only marginally (to approximately 4%) by modeling the potential impact of long-distance colonization over wider landscapes. The results suggest a widespread extinction debt among extant metapopulations of a declining species, necessitating conservation management or reserve designation even in apparent strongholds. For threatened species, metapopulation modeling is a potential means to identify landscapes near to extinction thresholds, to which conservation measures can be targeted for the best chance of success.  相似文献   

6.
This paper presents a metapopulation study of the bush cricket, Metrioptera bicolor , living in a recently fragmented landscape. The species inhabits grass and heathland patches of varying area and isolation. Analyses are made of how these geometrical factors affect local population size and density, distribution pattern, and the probability of local extinction and colonization. The proportion of available patches occupied varied between 72 and 79% during 1985–1990. Unoccupied patches were smaller and more isolated than those that were occupied. Patches where populations became extinct during this period were smaller than those with persisting populations. Since local population size was well correlated with patch area, it was clear that stochastic extinctions only occurred in small populations. Critical patch size for population extinction was approximately half a hectare. Colonized patches were less isolated than those that had not been colonized. Critical inter-patch distance for colonization was about 100 meters. The turnover was restricted to an identifiable share of the available patches. Only 33% of the patches were so small that extinction due to stochastic causes could be considered highly probable. This metapopulation will therefore most likely persist over a considerable period in its present spatial structure. There are apparent threats of further fragmentation, however, and nothing is known about the likelihood of large-scale extinctions resulting from extremely unfavorable weather conditions. Nevertheless, our results show that it is appropriate to include geometrical factors in metapopulation models.  相似文献   

7.
Rapid Extinction of Mountain Sheep Populations Revisited   总被引:2,自引:0,他引:2  
Abstract: Predicting extinction probabilities for populations of various sizes has been a primary focus of conservation biology. Berger (1990) presented an empirically based extinction model for mountain sheep ( Ovis canadensis ) populations in five southwestern states that predicted disappearance within 50 years of all populations estimated to number 50 sheep or fewer, but essentially no loss in that time period of populations estimated at over 100. The majority of the 122 populations he used in his analysis were from California, but his analysis did not use many of the historical size estimates for these populations. I tested Berger's (1990) model using the complete data set from California and found—contrary to his results—that, for all size classes of population estimates, at least 61% of the populations persisted for 50 years. Also, two predictions from Berger's model were not consistent with the data from California: (1) 10 populations have increased from estimates of 50 or fewer animals to over 100, whereas the Berger model predicted that these populations would only decline to extinction; and (2) of 27 extant populations with long enough records, 85% were estimated at least 50 years ago to be 50 individuals or fewer and should therefore be extinct by now. Berger's model has now failed tests in three states and therefore does not support the strong population size effect on extinction probability that it first appeared to provide, and it may serve conservation poorly through misdirected effort if it is used as the basis for setting policies or taking actions.  相似文献   

8.
Dispersal is the key process enhancing the long-term persistence of metapopulations in heterogeneous and dynamic landscapes. However, any individual emigrating from a occupied patch also increases the risk of local population extinction. The consequences of this increase for metapopulation persistence likely depend on the control of emigration. In this paper, we present results of individual-based simulations to compare the consequences of density-independent (DIE) and density-dependent (DDE) emigration on the extinction risk of local populations and a two-patch metapopulation. (1) For completely isolated patches extinction risk increases linearly with realised emigration rates in the DIE scenario. (2) For the DDE scenario extinction risk is nearly insensitive to emigration as longs as emigration probabilities remain below ≈0.2. Survival chances are up to half an order of magnitude larger than for populations with DIE. (3) For low dispersal mortality both modes of emigration increase survival of a metapopulation by ca. one order of magnitude. (4) For high dispersal mortality only DDE can improve the global survival chances of the metapopulation. (5) With DDE individuals are only removed from a population at high population density and the risk of extinction due to demographic stochasticity is thus much smaller compared to the DIE scenario.With density-dependent emigration prospects of metapopulations survival may thus be much higher compared to a system with density-independent emigration. Consequently, the knowledge about the factors driving emigration may significantly affect our conclusions concerning the conservation status of species.  相似文献   

9.
《Ecological modelling》2005,183(4):411-423
Habitat fragmentation can decrease local population persistence by reducing connectivity, which is a function of dispersal of individuals among habitat fragments. Dispersal is often treated as diffusion in population models, even though for many species it is a result of a series of behavioral decisions. We developed a metapopulation model to explore the potential importance of dispersal behaviors in driving metapopulation dynamics. We incorporated types of behavior that affect dispersal—colonization inhibiting, colonization enhancing, extinction inhibiting, extinction enhancing, rescue enhancing, rescue inhibiting—into Levins’ (1969) metapopulation model and projected occupancy rates for a variety of parameter values. Examples from the literature of behaviors associated with each of these parameters are provided. Our model simplifies into previously published metapopulation models that incorporate only a single behavior, and we present a density-dependent rescue function that leads to multiple non-zero equilibria. We found a variety of behavioral effects on metapopulations. Rescue enhancement fills patches faster than does colonization enhancement or extinction inhibition, and declines in patch occupancy are moderate with extinction enhancement, but colonization inhibition causes metapopulation extinction. We also found that with colonization and extinction inhibitions, equilibrium patch occupancy is inversely related to patch turnover rate. With density-dependent rescue, persistence depends not only on the strength of the strong rescue effect, but also on having a sufficient initial fraction of patches occupied; the stronger the rescue effect, the lower this fraction can be. This study suggests that dispersal behavior can have strong influences on metapopulation dynamics. It confirms the importance of understanding the relationship between landscape structure and dispersal behavior in understanding population persistence.  相似文献   

10.
Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations.  相似文献   

11.
Abstract:  Security infrastructure along international boundaries threatens to degrade connectivity for wildlife. To explore potential effects of a fence under construction along the U.S.–Mexico border on wildlife, we assessed movement behavior of two species with different life histories whose regional persistence may depend on transboundary movements. We used radiotelemetry to assess how vegetation and landscape structure affect flight and natal dispersal behaviors of Ferruginous Pygmy-Owls ( Glaucidium brasilianum ), and satellite telemetry, gene-flow estimates, and least-cost path models to assess movement behavior and interpopulation connectivity of desert bighorn sheep ( Ovis canadensis mexicana ). Flight height of Pygmy-Owls averaged only 1.4 m (SE 0.1) above ground, and only 23% of flights exceeded 4 m. Juvenile Pygmy-Owls dispersed at slower speeds, changed direction more, and had lower colonization success in landscapes with larger vegetation openings or higher levels of disturbance ( p ≤ 0.047), which suggests large vegetation gaps coupled with tall fences may limit transboundary movements. Female bighorn sheep crossed valleys up to 4.9 km wide, and microsatellite analyses indicated relatively high levels of gene flow and migration (95% CI for FST= 0.010–0.115, Nm = 1.9–24.8, M = 10.4–15.4) between populations divided by an 11-km valley. Models of gene flow based on regional topography and movement barriers suggested that nine populations of bighorn sheep in northwestern Sonora are linked by dispersal with those in neighboring Arizona. Disruption of transboundary movement corridors by impermeable fencing would isolate some populations on the Arizona side. Connectivity for other species with similar movement abilities and spatial distributions may be affected by border development, yet mitigation strategies could address needs of wildlife and humans.  相似文献   

12.
Abstract: Captive breeding and reintroduction programs are rarely evaluated, and assessment criteria vary widely. We used the following criteria to evaluate a bighorn sheep ( Ovis canadensis ) augmentation program: (1) survival and recruitment rates in the captive population, (2) survival of released animals, (3) recruitment of released animals, (4) growth rate of the reintroduced or augmented population, and (5) establishment of a viable wild population. Captive bighorn survival and recruitment was high, averaging 0.98 (SD = 0.05) and 71.0% (SD = 19.4), respectively. Annual survival of free-ranging captive-reared bighorn ( n = 73, x = 0.80, SD = 0.11) did not differ (   Z = −0.85, p = 0.40; n = 14) from survival of wild-reared bighorn ( n = 43, x = 0.81, SD = 0.12). Recruitment was unusually low for both captive-reared (  x = 13.7%, SD = 0.24) and wild-reared ewes (  x = 13.7%, SD = 0.20). Although reintroduction did not result in population growth or establishment of a viable population, it helped prevent extirpation of the reinforced deme, preserved metapopulation linkage, and aided habitat preservation. Chronic low recruitment and low adult survivorship precluded achievement of criteria 3–5. Environmental conditions in the release area also appeared to hinder program success. Standard evaluation criteria for ongoing reintroductions allow for informative assessments and facilitate comparisons needed to refine reintroduction science as a recovery tool for threatened or endangered populations.  相似文献   

13.
Abstract: Mountain sheep (Ovis canadensis) are closely associated with steep, mountainous, open terrain. Their habitat consequently occurs in a naturally fragmented pattern, often with substantial expanses of unsuitable habitat between suitable patches; the sheep have been noted to be slow colonizers of vacant suitable habitat. As a result, resource managers have focused on (1) conserving "traditional" mountainous habitats, and (2) forced colonization through reintroduction. Telemetry studies in desert habitats have recorded more intermountain movement by desert sheep than was previously thought to OCCUT. Given the heretofore unrecognized vagility of mountain sheep, we argue that existing corridors of "nontraditional" habitat connecting mountain ranges be given adequate conservation consideration. Additionally, small areas of mountainous habitat that an? not permanently occupied but that may serve as "stepping stones" within such corridors must be recognized for their potential importance to relatively isolated populations of mountain sheep. We discuss the potential importance of such corridors to other large, vagile species.  相似文献   

14.
Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species’ impacts, which may be particularly important under climate change. We used a spatially explicit metapopulation viability model to explore suppression strategies for ecologically damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary in Grand Canyon National Park. Our goals were to estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation; quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. Our models included scenarios targeting different life stages with spatially varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life stages. Brown trout population growth rates were most sensitive to changes in age 0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was 12 years compared with 4 with a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was achieved only through refocusing and increasing suppression. Our modeling approach improves understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies and, ultimately, maintenance of populations of endemic fishes.  相似文献   

15.
Altermatt F  Ebert D 《Ecology》2010,91(10):2975-2982
Migration is the key process to understand the dynamics and persistence of a metapopulation. Many metapopulation models assume a positive correlation between habitat patch size or stability and the number of emigrants. However, few empirical data exist, and habitat patch size and habitat stability may affect dispersal differently than they affect local persistence. Here, we studied the production of the migration stage (i.e., resting eggs called ephippia) of the cladoceran Daphnia magna in a metapopulation consisting of 530 rock pool habitat patches over 25 years. Earlier, the functioning of this metapopulation was explained with a Levins-type metapopulation model or with a mainland-island metapopulation model, based on local extinction and colonization data or time series data, respectively. We used pool volume, hydroperiod length, and number of desiccation events to calculate per-pool production of ephippia (i.e., migration stages). We estimated that populations in small and ephemeral habitat patches produced more than half of the 250 000 to 1 million ephippia that were produced in the metapopulation as a whole per year between 1982 and 2006. Furthermore, these small populations contributed approximately 90% of the ephippia exposed during desiccation events, while the contribution of the long-lived populations in large pools was minimal. We term this an "inverse mainland-island" type metapopulation and propose that populations in small, ephemeral habitat patches may also be the driving force for metapopulation dynamics in other systems.  相似文献   

16.
Population History, Genetic Variability, and Horn Growth in Bighorn Sheep   总被引:2,自引:0,他引:2  
Bighorn sheep ( Ovis canadensis ) are restricted in distribution and numbers relative to presettlement conditions. Some populations have alledgedly suffered losses of fitness resulting from small, insular populations and a breeding system that reduces effective population size. Large horns in rams, which confer breeding superiority, are absent from some populations, and this absence may result in part from loss of genetic variability. We investigated the relationship among allozyme variability, population history, and horn growth in bighorn sheep from the Rocky Mountains. Heterozygosity was higher for bighorn sheep than has been reported for Dall sheep ( O. dalli ). Heterozygosity and allelic variability were marginally related to effective population size for the proceeding 15 years. Horn growth was significantly higher in more heterozygous than in less heterozygous rams for years 6, 7, and 8 of life. By the end of year 8, more heterozygous rams had 13% higher horn volumes than less heterozygous rams. Most hunting of bighorn sheep involves selective removal of large-horned rams, which we hypothesize may reduce genetic variability of these populations and contribute to losses in fitness.  相似文献   

17.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

18.
Spatial structure and dynamics of multiple populations may explain species distribution patterns in patchy communities with heterogeneous disturbance regimes, especially when species have poor dispersal. The endemic-rich Florida (U.S.A.) rosemary scrub occupies about 4% of the west portion of Archbold Biological Station and occurs scattered within a matrix of less xeric vegetation. Longer fire-return times and higher frequency of open patches in rosemary scrub provide favorable habitat for many plant species. Occupancy of 123 species of vascular plants and ground lichens in 89 patches was determined by repeated site surveys. About two-thirds of the species occurring at more than 14 patches had a significant logistic regression of presence on time-since-fire, patch size, patch isolation, or their interactions. Species with presence related to the interaction between patch isolation and patch size were primarily herbs and small shrubs specializing in rosemary scrub. These results suggest the importance of spatial characteristics of the landscape for population turnover of these species. An incidence-based metapopulation model was used to predict extinction and colonization probabilities of those species with presence in rosemary scrub patches related to the studied spatial variables. This is the first attempt to apply incidence-based metapopulation models to plants. The results showed stronger effects of patch size and patch isolation on extinction probabilities of herbs than on those of woody species. Because of their effect on spatial heterogeneity and habitat availability, fire suppression and habitat destruction may decrease persistence probabilities for these rosemary scrub specialists, many of which are endangered species.  相似文献   

19.
Climate Change, Elevational Range Shifts, and Bird Extinctions   总被引:4,自引:0,他引:4  
Abstract:  Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8° C, projected a best guess of 400–550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1° C warming) to 30.0% (6.4° C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100–500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.  相似文献   

20.
Declines in survival and reproduction with age are prevalent in wild vertebrates, but we know little about longitudinal changes in behavioral, morphological, or physiological variables that may explain these demographic declines. We compared age-related variation in body mass of adult females in three free-living ungulate populations that have been the focus of long-term, individual-based research: bighorn sheep (Ovis canadensis) at Ram Mountain, Canada; roe deer (Capreolus capreolus) at Trois Fontaines, France; and Soay sheep (Ovis aries) on St. Kilda, Scotland. We use two recently proposed approaches to separate contributions to age-dependent variation at the population level from within-individual changes and between-individual selective disappearance. Selective disappearance of light individuals in all three populations was most evident at the youngest and oldest ages. In later adulthood, bighorn sheep and roe deer showed a continuous decline in body mass that accelerated with age while Soay sheep showed a precipitous decrease in mass in the two years preceding death. Our results highlight the importance of mass loss in explaining within-individual demographic declines in later adulthood in natural populations. They also reveal that the pattern of senescence, and potentially also the processes underlying demographic declines in late life, can differ markedly across related species with similar life histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号