首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
重金属污染土壤接种丛枝菌根真菌对蚕豆毒性的影响   总被引:6,自引:1,他引:5  
采用盆栽实验的方法,研究了重金属(包括Cu、Zn、Pb和Cd)复合污染和接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)Glomus mosseae对蚕豆(Vicia faba)生长及DNA损伤的影响.结果表明,虽然接种菌根真菌对蚕豆生物量的影响并不显著,但是却显著影响植物对重金属的吸收,接种菌根真菌对蚕豆吸收4种重金属元素的作用有差异.采用单细胞凝胶电泳(single cell gel electrophoresis,SCGE)法研究接种菌根真菌对蚕豆叶片的DNA损伤的影响,与重金属吸收的结果相吻合.结果表明,接种处理可显著增加蚕豆叶片的DNA损伤程度,这与接种处理可提高植物的重金属吸收相一致.  相似文献   

2.
Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.  相似文献   

3.
The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining.  相似文献   

4.
Chen BD  Zhu YG  Smith FA 《Chemosphere》2006,62(9):1464-1473
A glasshouse experiment was conducted to investigate U and As accumulation by Chinese brake fern, Pteris vittata L., in association with different arbuscular mycorrhizal fungi (AMF) from a U and As contaminated soil. The soil used contains 111 mg U kg(-1) and 106 mg As kg(-1). P. vittata L. was inoculated with each of three AMF, Glomus mosseae, Glomus caledonium and Glomus intraradices. Two harvests were made during plant growth (two and three months after transplanting). Mycorrhizal colonization depressed plant growth particularly at the early stages. TF (transfer factor) values for As from soil to fronds were higher than 1.0, while those for roots were much lower. Despite the growth depressions, AM colonization had no effect on tissue As concentrations. Conversely, TF values for U were much higher for roots than for fronds, indicating that only very small fraction of U was translocated to fronds (less than 2%), regardless of mycorrhizal colonization. Mycorrhizal colonization significantly increased root U concentrations at both harvests. Root colonization with G. mosseae or G. intraradices led to an increase in TF values for U from 7 (non-inoculation control) to 14 at the first harvest. The highest U concentration of 1574 mg kg(-1) was recorded in roots colonized by G. mosseae at the second harvest. The results suggested that P. vittata in combination with appropriate AMF would play very important roles in bioremediation of contaminated environments characterized by a multi-pollution.  相似文献   

5.
Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance.  相似文献   

6.
Root colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in Veronica rechingeri growing in heavy metal (HM) and non-polluted soils of the Anguran Zn and Pb mining region (Iran). Three species could be separated morphologically, while phylogenetic analyses after PCR amplification of the ITS region followed by RFLP and sequencing revealed seven different AMF sequence types all within the genus Glomus. Rarefaction analysis confirmed exhaustive molecular characterization of the AMF diversity present within root samples. Increasing heavy metal contamination between the sites studied was accompanied by a decrease in AMF spore numbers, mycorrhizal colonization parameters and the number of AMF sequence types colonizing the roots. Some AMF sequence types were only found at sites with the highest and lowest soil HM contents, respectively.  相似文献   

7.
Background Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered. Materials and Methods In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg–1 soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U. Results Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg-1. At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg-1 stimulated, but 60 mg P kg-1 marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls. Conclusion Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments. Perspectives The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.  相似文献   

8.
A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings.  相似文献   

9.
Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region.  相似文献   

10.
The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment.  相似文献   

11.
Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place.  相似文献   

12.
Seven sediment cores (60-80 cm) were collected at Chiricahueto marsh, a salt marsh influenced by agrochemical, domestic and industrial effluents. The concentrations of Ag, Al, Cd, Co, Cu, Fe, Li, Mn, Pb, V and Zn were studied in the solid phase at each 1-cm section. The profiles of Ag, Cd, Cu, Mn, Ni, Pb and Zn showed a slight recent pollution in the site with enrichment and anthropogenic factors higher than unity; and correlation analysis indicated a direct association with organic carbon. Al, Co, Cr, Fe, Li, and V concentration profiles displayed a negative correlation with organic C and positive with mud content and no consistent enrichment at surface. Based on the principal component analysis and correlation analysis, two principal groups of metals were identified. The first group includes Al, Co, Cr, Fe and Li, that are derived predominantly from the weathering of parent materials in the local bedrock; and the second group include most of the metals, which were relatively enriched at surficial sediments, that are produced mainly by anthropogenic activities such as agriculture (Cd, Cu and Zn), sewage effluents (Ag, Cd, Cu, Ni, Pb and Zn) and in lesser extent atmospheric deposition (Cd and Pb).  相似文献   

13.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

14.
The interaction between two autochthonous microorganisms (Brevibacillus brevis and Glomus mosseae) isolated from Cd amended soil increased plant growth, arbuscular mycorrhizal (AM) colonization and physiological characteristics of the AM infection (measured as SDH or ALP activities). The enhanced plant Cd tolerance after coinoculation with native microorganisms seemed to be a consequence of increased P and K acquisition and, simultaneously, of decreased concentration of Cd, Cr, Mn, Cu, Mo, Fe and Ni in plant tissue. Autochthonous microbial strains were more efficient for nutrient uptake, to immobilize metals and decrease their translocation to the shoot than reference G. mosseae (with or without bacteria). Indole acetic acid produced by B. brevis may be related to its ability for improving root growth, nodule production and AM fungal intra and extraradical development. Dehydrogenase, phosphatase and beta-glucosidase activities, indicative of microbial metabolism and soil fertility, were maximized by the coinoculation of autochthonous microorganisms in cadmium polluted conditions. As a consequence, the use of native microorganisms may result very efficient in bioremediation.  相似文献   

15.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

16.
Soil contamination with anthropogenic metals resulting from biosolid application is widespread around the world. To better predict the environmental fate and mobility of contaminants, it is critical to study the capacity of biosolid-amended soils to retain and release metals. In this paper, nickel adsorption onto a calcareous soil, a lime-stabilized biosolid, and soil–biosolid mixtures (30, 75, and 150 t biosolid/ha) was studied in batch experiments. Sorption experiments showed that (1) Ni adsorption was higher onto the biosolid than the calcareous soil, and (2) biosolid acted as an adsorbent in the biosolid–soil mixtures by increasing Ni retention capacity. The sorption tests were complemented with the estimation of Ni adsorption reversibility by successive applications of extraction solutions with water, calcium (100 mg/L), and oxalic acid (equivalent to 100 mg carbon/L). It has been shown that Ni desorption rates in soil and biosolid-amended soils were lower than 30 % whatever the chemical reagent, indicating that Ni was strongly adsorbed on the different systems. This adsorption/desorption hysteresis effect was particularly significant at the highest biosolid concentration (150 t/ha). Finally, an adsorption empirical model was used to estimate the maximum permissible biosolid application rate using French national guideline. It has been shown that desorption effects should be quantitatively considered to estimate relevant biosolid loadings.  相似文献   

17.
Using bio-disturbed sulphide to trace the mobility and transformation of Cu, Pb, Ni and Zn in the sediments of the Spartina alterniflora-dominated salt marsh in the Yangtze River Estuary, measurements were made of the seasonal variations of acid-volatile sulphide (AVS) and of the simultaneously extracted metals (SEM) in the rhizosphere sediments. Microcosm incubation experiments recreating flooding conditions were conducted to evaluate the effect of AVS and other metal binding phases upon the dynamics of Cu, Pb, Ni and Zn in the salt marsh sediments. The results demonstrate that the ratio values of SEM/AVS have a significant seasonal variation in the rhizosphere sediments and that the anoxic conditions in the sediments were likely enhanced by S. alterniflora during the summer and autumn compared with the anoxic conditions resulting from the native species Phragmites australis and Scirpus mariqueter. The incubation experiments suggest that Fe(III) and Mn(IV/III) (hydr)oxides provide important binding sites for heavy metals under oxic conditions, and sulphide provides important binding sites for the Cu and Pb under anoxic conditions. Our observations indicate that the mobility of heavy metals in the salt marsh sediments is strongly influenced by biogeochemical redox processes and that the invasive S. alterniflora may increase the seasonal fluctuation in heavy metal bioavailability in the salt marsh ecosystem.  相似文献   

18.
The effect of arbuscular mycorrhiza on heavy metal uptake and translocation was investigated in Cannabis sativa. Hemp was grown in the presence and absence of 100 microg g-1 Cd and Ni and 300 microg g-1 Cr(VI), and inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. In our experimental condition, hemp growth was reduced in inoculated plants and the reduction was related to the degree of mycorrhization. The percentage of mycorrhizal colonisation was 42% and 9% in plants grown in non-contaminated and contaminated soil, suggesting a significant negative effect of high metal concentrations on plant infection by G. mosseae. Soil pH, metal bioavailability and plant metal uptake were not influenced by mycorrhization. The organ metal concentrations were not statistically different between inoculated and non-inoculated plants, apart from Ni which concentration was significantly higher in stem and leaf of inoculated plants grown in contaminated soil. The distribution of absorbed metals inside plant was related to the soil heavy metal concentrations: in plant grown in non-contaminated soil the greater part of absorbed Cr and Ni was found in shoots and no significant difference was determined between inoculated and non-inoculated plants. On the contrary, plants grown in artificially contaminated soil accumulated most metal in root organ. In this soil, mycorrhization significantly enhanced the translocation of all the three metals from root to shoot. The possibility to increase metal accumulation in shoot is very interesting for phytoextraction purpose, since most high producing biomass plants, such as non-mycorrhized hemp, retain most heavy metals in roots, limiting their application.  相似文献   

19.
Some plants have high ability to absorb heavy metals in high concentrations. In this study, Halimione portulacoides was tested in conjunction with citric acid, in order to evaluate the possible use of this plant in phytoremediation processes in salt marshes. Two different concentrations of chelator were used combined with two heavy metal concentrations. When 25microM of citric acid was applied, Cd uptake and translocation was enhanced while for Ni these processes were almost inhibited. Increasing citric acid concentration to 50microM, Ni absorption decreased by the roots while for Cd there was still an increase in root uptake. Analysing translocation with this concentration of chelator, a decreased metal content in the upper organs for both metals was observed. While for Cd an optimal concentration of 25microM of citric acid was observed for phytoremediative processes, for nickel neither concentrations of chelator showed advantages for application in this remediative method.  相似文献   

20.
采用淋洗法,研究了垃圾堆肥中重金属在不同温度与模拟酸雨条件下的淋溶特征。结果表明,随着淋洗次数的增加,淋洗液中Cd、Cr、Cu、Ni和Pb的含量都有很大程度的减少。Cd、Cr、Cu和Ni 4种金属在模拟酸雨的情况下淋出量明显高于蒸馏水的情况,增幅都在116%和351%之间,差异显著(P<0.05)或极显著(P<0.01),而酸雨对Pb的淋出影响较小。在酸雨淋洗下,重金属的淋出率在30℃时达到最大,其中Ni随着温度的变化相对较小。而在蒸馏水淋洗下,重金属的淋出率随着温度的变化相对平稳。此外,5种重金属的淋出率明显不同,其中Cr和Ni的淋出率相对较大,Pb最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号