首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans-I, and Bacillus circulans-II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 +/- 0.2% and 76.04 +/- 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l(-1). Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 +/- 0.6% in aerobic system and 12.33 +/- 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans-I and Bacillus circulans-II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.  相似文献   

2.
The present study was carried out to isolate bacteria capable of producing biosurfactant that solublize endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro- 6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and for enhanced degradation of endosulfan and its major metabolite endosulfate. The significance of the study is to enhance the bioavailability of soil-bound endosulfan residues as its degradation is limited due to its low solubility. A mixed bacterial culture capable of degrading endosulfan was enriched from pesticide-contaminated soil and was able to degrade about 80% of α-endosulfan and 75% of β-endosulfan in five days. Bacterial isolates were screened for biosurfactant production and endosulfan degradation. Among the isolates screened, four strains produced biosurfactant on endosulfan. ES-47 showed better emulsification of endosulfan and degraded 99% of endosulfan and 94% of endosulfate formed during endosulfan degradation. The strain reduced the surface tension up to 37 dynes/cm. The study reveals that the strain was capable of degrading endosulfan and endosulfate with simultaneous biosurfactant production.  相似文献   

3.

In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans–I, and Bacillus circulans–II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 ± 0.2% and 76.04 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l?1. Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 ± 0.6% in aerobic system and 12.33 ± 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans–I and Bacillus circulans–II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.  相似文献   

4.
The enriched mixed culture aerobic and anaerobic bacteria from agricultural soils were used to study the degradation of endosulfan (ES) in aqueous and soil slurry environments. The extent of biodegradation was ∼95% in aqueous and ∼65% in soil slurry during 15 d in aerobic studies and, ∼80% in aqueous and ∼60% in soil slurry during 60 d in anaerobic studies. The pathways of aerobic and anaerobic degradation of ES were modeled using combination of Monod no growth model and first order kinetics. The rate of biodegradation of β-isomer was faster compared to α-isomer. Conversion of ES to endosulfan sulfate (ESS) and endosulfan diol (ESD) were the rate limiting steps in aerobic medium and, the hydrolysis of ES to ESD was the rate limiting step in anaerobic medium. The mass balance indicated further degradation of endosulfan ether (ESE) and endosulfan lactone (ESL), but no end-products were identified. In the soil slurries, the rates of degradation of sorbed contaminants were slower. As a result, net rate of degradation reduced, increasing the persistence of the compounds. The soil phase degradation rate of β-isomer was slowed down more compared with α-isomer, which was attributed to its higher partition coefficient on the soil.  相似文献   

5.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo-dioxathiepin-3-oxide) is a cyclodiene organochlorine currently used as an insecticide all over the world and its residues are posing a serious environmental threat. This study reports the enrichment and isolation of a microbial culture capable of degrading endosulfan with minimal production of endosulfan sulfate, the toxic metabolite of endosulfan, from tropical acid soil. Enrichment was achieved by using the insecticide as sole sulfur source. The enriched microbial culture, SKL-1, later identified as Pseudomonas aeruginosa, degraded up to 50.25 and 69.77 % of α and β endosulfan, respectively in 20 days. Percentage of bioformation of endosulfan sulfate to total formation was 2.12% by the 20th day of incubation. Degradation of the insecticide was concomitant with bacterial growth reaching up to an optical density of 600 nm (OD600) 2.34 and aryl sulfatase activity of the broth reaching up to 23.93 μg pNP/mL/hr. The results of this study suggest that this novel strain is a valuable source of potent endosulfan–degrading enzymes for use in enzymatic bioremediation. Further, the increase in aryl sulfatase activity of the broth with the increase in degradation of endosulfan suggests the probable involvement of the enzyme in the transformation of endosulfan to its metabolites.  相似文献   

6.
A novel mixed bacterial culture was enriched from an endosulfan (6, 7, 8, 9, 10, 10 - hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 3, 4-benzo (e) dioxathiepin-3-oxide) processing industrial surface soil. The cultures were successful in the degradation of aqueous phase endosulfan in both aerobic and anaerobic conditions. Using the cultures, endosulfan degradation in silty gravel with sand (GM) was examined via pilot scale reactor at an endosulfan concentration of 0.78 +/- 0.01 mg g(- 1) of soil, and optimized moisture content of 40 +/- 1%. During operation, vertical spatial variability in endosulfan degradation was observed within the reactor. At the end of 56 days, maximum endosulfan degradation efficiency of 78 +/- 0.2% and 86.91 +/- 0.2% was observed in the top and bottom portion of the reactor, respectively. Both aerobic and anaerobic conditions were observed within the reactor. However, endosulfan degradation was predominant in anaerobic condition and the total protein concentration in the reactor was declined progressively down the soil depth. Throughout the study, no known intermediate metabolites of endosulfan reported by previous researchers were observed.  相似文献   

7.
A novel mixed bacterial culture was enriched from an endosulfan (6, 7, 8, 9, 10, 10 – hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 3, 4-benzo (e) dioxathiepin-3-oxide) processing industrial surface soil. The cultures were successful in the degradation of aqueous phase endosulfan in both aerobic and anaerobic conditions. Using the cultures, endosulfan degradation in silty gravel with sand (GM) was examined via pilot scale reactor at an endosulfan concentration of 0.78 ± 0.01 mg g? 1 of soil, and optimized moisture content of 40 ± 1%. During operation, vertical spatial variability in endosulfan degradation was observed within the reactor. At the end of 56 days, maximum endosulfan degradation efficiency of 78 ± 0.2% and 86.91 ± 0.2% was observed in the top and bottom portion of the reactor, respectively. Both aerobic and anaerobic conditions were observed within the reactor. However, endosulfan degradation was predominant in anaerobic condition and the total protein concentration in the reactor was declined progressively down the soil depth. Throughout the study, no known intermediate metabolites of endosulfan reported by previous researchers were observed.  相似文献   

8.
Indigenous mixed populations of anaerobic microorganisms from an irrigation tailwater drain and submerged agricultural chemical waste pit readily biodegraded the major isomer of endosulfan (endosulfan I). Endosulfan I was biodegraded to endosulfan diol, a low toxicity degradation product, in the presence of organic carbon sources under anaerobic, methanogenic conditions. While there was extensive degradation (>85%) over the 30 days, there was no significant enhancement of degradation from enriched inocula. This study demonstrates that endosulfan I has the potential to be biodegraded in sediments, in the absence of enriched microorganisms. This is of particular importance since such sediments are prevalent in cotton-growing areas and are typically contaminated with endosulfan residues. The importance of minimizing non-biological losses has also been highlighted as a critical issue in determining anaerobic biodegradation potential. Seals for such incubation vessels must be both oxygen and pollutant impermeable. Teflon-lined butyl rubber provides such a seal because of its resistance to the absorption of volatiles and in preventing volatilization. Moreover, including a 100 mM phosphate buffer in the anaerobic media has reduced non-biological losses from chemical hydrolysis, allowing biodegradation to be assessed.  相似文献   

9.
用低浓度SO2诱导驯化方法获得高效脱硫菌群,并用分离培养与16S rRNA基因测序技术相结合的方法鉴定菌群种属,分析驯化过程中种群结构的动态变化,同时研究分离纯菌种的脱硫性能。结果表明,从诱导驯化7 d和14 d菌液中分别分离出23株菌和22株菌,16S rRNA序列分析发现这些菌归属于13个种,其中有6个种(Rhodococcus erythropolis、Pseudomonas putida、Microbacterium oxydans、Sphingomonas koreensis、Acinetobacter junii、Acinetobacter johnsonii)对SO2-3有较强的降解能力,并在持续驯化过程中稳定的生长传代,降解产物以硫酸根为主,还有极少量的单质硫。与含混合菌的驯化菌液降解SO2-3的能力相比,单一脱硫菌的脱硫性能较弱。脱硫功能菌株及其基本特性的研究为微生物处理SO2烟气提供了丰富的菌源信息和理论基础。  相似文献   

10.
Stenotrophomonas maltophilia T3-c, isolated from a biofilter for the removal of benzene, toluene, ethylbenzene, and xylene (BTEX), could grow in a mineral salt medium containing toluene, benzene, or ethylbenzene as the sole source of carbon. The effect of environmental factors such as initial toluene mass, medium pH, and temperature on the degradation rate of toluene was investigated. The cosubstrate interactions in the BTEX mixture by the isolate were also studied. Within the range of initial toluene mass (from 23 to 70 pmol), an increased substrate concentration increased the specific degradation of toluene by S. maltophilia T3-c. The toluene degradation activity of S. maltophilia T3-c could be maintained at a broad pH range from 5 to 8. The rates at 20 and 40 degrees C were 43 and 83%, respectively, of the rate at 30 degrees C. The specific degradation rates of toluene, benzene, and ethylbenzene by strain T3-c were 2.38, 4.25, and 2.06 micromol/g-DCW/hr. While xylene could not be utilized as a growth substrate by S. maltophilia T3-c, the presence of toluene resulted in the cometabolic degradation of xylene. The specific degradation rate of toluene was increased by the presence of benzene, ethylbenzene, or xylene in binary mixtures. The presence of toluene or xylene in binary mixtures with benzene increased the specific degradation rate of benzene. The presence of ethylbenzene in binary mixtures with benzene inhibited benzene degradation. The presence of more than three kinds of substrates inhibited the specific degradation rate of benzene. All BTEX mixtures, except tri-mixtures of benzene, ethylbenzene, and xylene or mixtures of all four substrates, had little effect on the degradation of ethylbenzene by S. maltophilia T3-c. The utilization preference of the substrates by S. maltophilia T3-c was as follows: ethylbenzene was degraded fastest, followed by toluene and benzene. However, the specific degradation rates of substrates, in order, were benzene, toluene, and ethylbenzene.  相似文献   

11.
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.  相似文献   

12.
Kinetic studies of endosulfan photochemical degradation in controlled aqueous systems were carried out by ultraviolet light irradiation at lambda = 254 nm. The photolysis of (alpha + beta: 2 + 1) endosulfan, alpha-endosulfan and beta-endosulfan were first-order kinetics. The observed rate constants obtained from linear least-squares analysis of the data were 1 x 10(-4) s(-1); 1 x 10(-4) s(-1); and 2 x 10(-5) s(-1), respectively, and the calculated quantum yields (phi) were 1, 1 and 1.6, respectively. Preliminary differential pulse polarographic (DPP) analysis allowed to observe the possible endosulfan photochemical degradation pathway. This degradation route involves the formation of the endosulfan diol, its transformation to endosulfan ether and finally the ether's complete degradation by observing the potential shifts.  相似文献   

13.
Dams RI  Paton GI  Killham K 《Chemosphere》2007,68(5):864-870
Sphingobium chlorophenolicum is well known as a pentachlorophenol (PCP) degrader. The objective of this study was to evaluate PCP degradation in a loamy sandy soil artificially contaminated with PCP using phytoremediation and bioaugmentation. Measurements of PCP concentrations were carried out using high performance liquid chromatography analyses (HPLC). The toxic effect of PCP on plants was studied through the monitoring of weight plant and root length. The biodegradation of PCP by S. chlorophenolicum in soil was assessed with a bioluminescence assay of Escherichia coli HB101 pUCD607. Bacterial analyses were carried out by plating on Mineral Salt Medium (MSM) for S. chlorophenolicum, MSM for PCP-degrading/tolerant organisms and Trypticase Soy Broth Agar (TSBA) for heterotrophic organisms. The introduction of S. chlorophenolicum into soil with plants showed a faster degradation when compared to the non-inoculated soil. The monitoring of the plant growth showed a protective role of S. chlorophenolicum against the toxicity of PCP. The bioassay confirmed that initial toxicity was lowered while degradation progressed. There was a significant increase of organisms tested in the roots in comparison to those in the soil. This study showed that the presence of S. chlorophenolicum enhanced the PCP degradation in a loamy soil and also it had a protective role to prevent phytotoxic effects of PCP on plant growth. The combined use of bioaugmentation and plants suggests that the rhizosphere of certain plant species may be important for facilitating microbial degradation of pesticides in soil with important implications for using vegetation to stabilize and remediate surface soils.  相似文献   

14.
With the increasing use of pesticides in modern agriculture, increased evidence of their disastrous effects on the environment has been noticed. Pesticides applied in various modes and places contaminate various parts of the environment, including groundwater sources. As pesticide problems are greater in the rural areas, the authors have developed a successful low-cost technology for rural areas with wood charcoal treated with nitric acid. As pesticides are classified as hazardous waste, the sludge resulting from their treatment has to be disposed off safely. This paper describes the removal of pesticides at a higher concentration of 24 mg/l, using a mixed culture of aerobic bacteria, and also a study of the inhibiting action of endosulfan on bacterial cells. It was found that bacteria without acclimatisation could remove 89.7% of endosulfan, and with prior acclimatisation the efficiency was 96%. It was found that removal in the initial phase is because of the hydrophobic nature of endosulfan and its affinity to sediments. The adsorbed endosulfan subsequently undergoes biotransformation, which has been confirmed by monitoring endosulfan concentrations in the bacterial sludge. Transformation was found to be significant in the acclimatised culture system. The fluctuation in bacterial performance was greater at lower concentrations of endosulfan, and overall inhibition was greater at higher concentrations.  相似文献   

15.
Kim TS  Kim JK  Choi K  Stenstrom MK  Zoh KD 《Chemosphere》2006,62(6):926-933
The photocatalytic degradation of methyl parathion was carried out using a circulating TiO2/UV reactor. The experimental results showed that parathion was more effectively degraded in the photocatalytic condition than the photolysis and TiO2-only condition. With photocatalysis, 10mg/l parathion was completely degraded within 60 min with a TOC decrease exceeding 90% after 150 min. The main ionic byproducts during photocatalysis were measured. The nitrogen from parathion was recovered mainly as NO3-, NO2- and NH4+, 80% of the sulfur as SO4(2-), and less than 5% of the phosphorus as PO4(3-). The organic intermediates 4-nitrophenol and paraoxon were also identified, and these were further degraded. Two different bioassays (Vibrio fischeri and Daphnia magna) were used to test the acute toxicity of solutions treated by photocatalysis and photolysis. A Microtox test using V. fischeri showed that the toxicity, expressed as the relative toxicity (%), was reduced almost completely after 90 min under photocatalysis, whereas only an 83% reduction was achieved with photolysis alone. Another toxicity test using D. magna also showed that the relative toxicity disappeared after 90 min under photocatalysis, whereas there was a 65% reduction in relative toxicity with photolysis alone. The pattern of toxicity reduction parallels the decrease in parathion and TOC concentrations.  相似文献   

16.
Kinetic studies of endosulfan photochemical degradation in controlled aqueous systems were carried out by ultraviolet light irradiation at λ = 254 nm. The photolysis of (α + β: 2 + 1) endosulfan, α-endosulfan and β-endosulfan were first-order kinetics. The observed rate constants obtained from linear least-squares analysis of the data were 1 × 10?4 s?1; 1 × 10?4 s?1; and 2 × 10?5 s?1, respectively, and the calculated quantum yields (φ) were 1, 1 and 1.6, respectively. Preliminary differential pulse polarographic (DPP) analysis allowed to observe the possible endosulfan photochemical degradation pathway. This degradation route involves the formation of the endosulfan diol, its transformation to endosulfan ether and finally the ether's complete degradation by observing the potential shifts.  相似文献   

17.
Yang CF  Lee CM  Wang CC 《Chemosphere》2006,62(5):709-714
Many chlorophenols tend to persist in the environment, and they may become public health hazards. Among chlorophenols, pentachlorophenol (PCP) is a priority pollutant that has been used widely as a general biocide in commercial wood treatment. Owing to the rapid industrial growth, serious soil and water pollutions by chlorophenols has been reported in Taiwan. In this study, 10 indigenous PCP-degrading bacterial strains were isolated from a PCP-degrading mixed culture, and the potential of both the pure and mixed cultures for PCP degradation compared. Moreover, the physiological characteristics and optimum growth conditions of the PCP-degrading bacteria were investigated. One of the isolated bacterial strains with good potential for PCP degradation was characterized and identified as Sphingomonas chlorophenolica by 16S rDNA gene analysis. The result of the optimum growth temperatures revealed that this organism was a mesophile. The optimum pH for PCP removal by S. chlorophenolica was between 6.9 and 7.6. Increase in concentration of PCP has a negative effect on the biodegradation potential of S. chlorophenolica and PCP concentration above 600 mg l(-1) was inhibitory to its growth. The results of this study indicate that this S. chlorophenolica strain has a better potential for PCP degradation compared to the enriched mixed culture. The physiological characterization of the isolates also indicates the possible application of this strain for bioremediation of sites contaminated with PCP.  相似文献   

18.
用低浓度SO2诱导驯化方法获得高效脱硫菌群,并用分离培养与16S rRNA基因测序技术相结合的方法鉴定菌群种属,分析驯化过程中种群结构的动态变化,同时研究分离纯菌种的脱硫性能。结果表明,从诱导驯化7 d和14 d菌液中分别分离出23株菌和22株菌,16S rRNA序列分析发现这些菌归属于13个种,其中有6个种(Rhodococcus erythropolis、Pseudomonas putida、Microbacterium oxydans、Sphingomonas koreensis、Acinetobacter junii、Acinetobacter johnsonii)对SO2-3有较强的降解能力,并在持续驯化过程中稳定的生长传代,降解产物以硫酸根为主,还有极少量的单质硫。与含混合菌的驯化菌液降解SO2-3的能力相比,单一脱硫菌的脱硫性能较弱。脱硫功能菌株及其基本特性的研究为微生物处理SO2烟气提供了丰富的菌源信息和理论基础。  相似文献   

19.
Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

20.
Removal efficiencies, kinetics and degradation pathways of aldrin, endosulfan α and endosulfan β in vegetable waste were evaluated during rotary drum and conventional windrow composting. The highest percentage removal of aldrin, endosulfan α and endosulfan β in rotary drum composting was 86.8, 83.3 and 85.3% respectively, whereas in windrow composting, it was 66.6%, 77.7% and 67.2% respectively. The rate constant of degradation of aldrin, endosulfan α and endosulfan β during rotary drum composting ranged from 0.410–0.778, 0.057–0.076 and 0.009–0.061 day?1 respectively. The pathways of degradation of these pesticides in composting process were proposed. Metabolites dieldrin and 1 hydroxychlorodene formed during composting of aldrin in the vegetable waste indicated the occurrence of epoxidation reaction and oxidation of bridge carbon of aldrin containing the methylene group. Formation of chloroendic acid and chloroendic anhydride during composting of endosulfan containing vegetable waste support the occurrence of endosulfan sulfate and dehydration reaction respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号