首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mixed bacterial culture was enriched from an endosulfan (6, 7, 8, 9, 10, 10 – hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 3, 4-benzo (e) dioxathiepin-3-oxide) processing industrial surface soil. The cultures were successful in the degradation of aqueous phase endosulfan in both aerobic and anaerobic conditions. Using the cultures, endosulfan degradation in silty gravel with sand (GM) was examined via pilot scale reactor at an endosulfan concentration of 0.78 ± 0.01 mg g? 1 of soil, and optimized moisture content of 40 ± 1%. During operation, vertical spatial variability in endosulfan degradation was observed within the reactor. At the end of 56 days, maximum endosulfan degradation efficiency of 78 ± 0.2% and 86.91 ± 0.2% was observed in the top and bottom portion of the reactor, respectively. Both aerobic and anaerobic conditions were observed within the reactor. However, endosulfan degradation was predominant in anaerobic condition and the total protein concentration in the reactor was declined progressively down the soil depth. Throughout the study, no known intermediate metabolites of endosulfan reported by previous researchers were observed.  相似文献   

2.
In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans-I, and Bacillus circulans-II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 +/- 0.2% and 76.04 +/- 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l(-1). Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 +/- 0.6% in aerobic system and 12.33 +/- 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans-I and Bacillus circulans-II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.  相似文献   

3.

In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans–I, and Bacillus circulans–II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 ± 0.2% and 76.04 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l?1. Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 ± 0.6% in aerobic system and 12.33 ± 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans–I and Bacillus circulans–II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.  相似文献   

4.
In the present study, lindane (1,2,3,4,5,6-hexachlorocyclohexane), methyl parathion (O-dimethylO-(4-nitro-phenyl) phosphorothioate) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) degradation potential of different enriched bacterial cultures were evaluated under various environmental conditions. Enriched cultures behaved differently with different pesticides. Degradation was more in a facultative anaerobic condition as compared to that in aerobic condition. A specific pesticide enriched culture showed maximum degradation of that pesticide irrespective of pesticides and environmental conditions. Lindane and endosulfan enriched cultures behaved almost similarly. Degradation of lindane by lindane enriched cultures was 75 +/- 3% in aerobic co-metabolic process whereas 78 +/- 5% of lindane degradation occurred in anaerobic co-metabolic process. Degradation of methyl parathion by methyl parathion enriched culture was 87 +/- 1% in facultative anaerobic condition. In almost all the cases, many intermediate metabolites were observed. However, many of these metabolites disappeared after 4-6 weeks of incubation. Mixed pesticide-enriched culture degraded all the three pesticides more effectively as compared to specific pesticide- enriched cultures. It can be inferred from the results that a bacterial consortium enriched with a mixture of all the possible pesticides that are present in the site seems to be a better option for the effective bioremediation of multi-pesticide contaminated site.  相似文献   

5.
The enriched mixed culture aerobic and anaerobic bacteria from agricultural soils were used to study the degradation of endosulfan (ES) in aqueous and soil slurry environments. The extent of biodegradation was ∼95% in aqueous and ∼65% in soil slurry during 15 d in aerobic studies and, ∼80% in aqueous and ∼60% in soil slurry during 60 d in anaerobic studies. The pathways of aerobic and anaerobic degradation of ES were modeled using combination of Monod no growth model and first order kinetics. The rate of biodegradation of β-isomer was faster compared to α-isomer. Conversion of ES to endosulfan sulfate (ESS) and endosulfan diol (ESD) were the rate limiting steps in aerobic medium and, the hydrolysis of ES to ESD was the rate limiting step in anaerobic medium. The mass balance indicated further degradation of endosulfan ether (ESE) and endosulfan lactone (ESL), but no end-products were identified. In the soil slurries, the rates of degradation of sorbed contaminants were slower. As a result, net rate of degradation reduced, increasing the persistence of the compounds. The soil phase degradation rate of β-isomer was slowed down more compared with α-isomer, which was attributed to its higher partition coefficient on the soil.  相似文献   

6.
The insecticide gamma-hexachlorocyclohexane (gamma-HCH or lindane), which has been extensively used for agricultural and medical purposes, presents high persistence and toxicity to the environment and low solubility. This study intends to assess the efficiency of an anaerobic reactor to degrade HCH isomers contained in soil slurry cultures. This study was developed in two phases: experiments in flasks to optimize the process parameters, and assessment of the slurry process in the anaerobic slurry reactor operated for an approximate period of a year. The influence of different environmental conditions was evaluated: the HCH concentration (25-100 mg HCH kg-1), the type of substrate (volatile fatty acids or starch), the sludge concentration (2-8 g VSS l-1) and the replacement of spiked soil to simulate a fed-batch operation (10-50%). The best results were obtained when the reactor was operated with a sludge concentration of 8 g VSS l-1, starch concentration of 2 g COD l-1 and soil replacements of 10-20%. Under these conditions, alpha- and gamma-HCH were completely degraded after 10d while nearly 90% beta- and delta-HCH were removed only after 50 d. According to the obtained results related to the total degradation of the HCH isomers and the degradation rates, especially high for alpha- and gamma-HCH, the anaerobic slurry reactor appears to be a good alternative for the degradation of the HCH isomers present in polluted soil.  相似文献   

7.
Reliable design and operation of biological wastewater treatment systems demand robust models of biological degradation processes. However, methods to directly measure key bacterial growth kinetics have not been readily available. Those methods that are available rely on the classic measurement of aerobic respiration using oxygen uptake take rates. This paper shows how the thymidine assay can be used as a rapid and direct measurement of bacterial specific growth rates (mu) in situ for an anaerobic treatment process, independent of aerobic respiration. A filtration-based assay is applied and evaluated a dispersed-phase high-rate anaerobic treatment process, with results obtained in less than an hour. The chemical oxygen demand (COD) biomass in the reactor was 0.52 kg COD m(-3) and the specific growth rate of these anaerobic bacteria was 0.8 +/- 0.2 d(-1). It took the bacterial populations 21.6 hours to double. This is an important advancement from existing methods that use aerobic respiration as a pseudo measurement of bacterial specific growth rates. The method allows rapid and direct measures of microbial growth rates for anaerobic treatment processes.  相似文献   

8.
To examine the bioremediation potential of Mortierella sp. strain W8 in endosulfan contaminated soil, the fungus was inoculated into sterilized and unsterilized soil spiked with endosulfan. Wheat bran and cane molasses were used as substrates to understand the influence of different organic materials on the degradation of endosulfan in soil. Strain W8 degraded α- and β-endosulfan in both sterilized and unsterilized soil. In unsterilized soil with wheat bran+W8, α- and β- endosulfan were degraded by approximately 80% and 50%, respectively after 28 d incubation against the initial endosulfan concentration (3 mg kg(-1) dw). The corresponding values for α- and β-endosulfan degradation with wheat bran only were 50% and 3%. Endosulfan diol metabolite was detected after 14 d incubation in wheat bran+W8 whereas it was not found with wheat bran only. Production of endosulfan sulfate, the main metabolite of endosulfan, was suppressed with wheat bran+W8 treatment compared with wheat bran only. It was demonstrated that wheat bran is a more suitable substrate for strain W8 than cane molasses. Wheat bran+W8 is a superior fungus and substrate mix for bioremediation in soil contaminated with endosulfan.  相似文献   

9.
The effect of soil redox conditions on the degradation of metolachlor and metribuzin in two Mississippi soils (Forrestdale silty clay loam and Loring silt loam) were examined in the laboratory. Herbicides were added to soil in microcosms and incubated either under oxidized (aerobic) or reduced (anaerobic) conditions. Metolachlor and metribuzin degradation under aerobic condition in the Forrestdale soil proceeded at rates of 8.83 ngd(-1) and 25 ngd(-1), respectively. Anaerobic degradation rates for the two herbicides in the Forestdale soil were 8.44 ngd(-1) and 32.5 ngd(-1), respectively. Degradation rates for the Loring soil under aerobic condition were 24.8 ngd(-1) and 12.0 ngd(-1) for metolachlor and metribuzin, respectively. Metolachlor and metribuzin degradation rates under anaerobic conditions in the Loring soil were 20.9 ngd(-1) and 5.35 ngd(-1). Metribuzin degraded faster (12.0 ngd(-1)) in the Loring soil under aerobic conditions as compared to anaerobic conditions (5.35 ngd(-1)).  相似文献   

10.
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.  相似文献   

11.
Biological treatment of dye wastewaters using an anaerobic-oxic system   总被引:5,自引:0,他引:5  
Three dye solutions, namely, C.I. Acid Yellow 17, C.I. Basic Blue 3, and C.I. Basic Red 2, were treated in an upflow anaerobic sludge blanket (UASB) reactor followed by a semi-continuous aerobic activated sludge tank. When hydraulic retention time was about 12 hours, no significant color removal was observed in the aerobic stage. In the anaerobic stage, Acid Yellow 17, Basic Blue 3, and Basic Red 2 were removed by 20%, 72%, and 78%, respectively. To treat wastewater from a dye manufacturing factory with COD concentration of 1200 mg/l and Color of 500 degree (dilution factor), an UASB reactor (4.5 liters) and an activated sludge tank (5 liters, adjustable), COD and color were removed by more than 83% and 90% at a COD loading rate of 5.3 kg COD/m3-day in the anaerobic stage, and at the hydraulic retention time of 6-10 hours for the anaerobic stage and 6.5 for the aerobic stage. The anaerobic stage of the A/O system removes both color and COD. In addition, it also improves biodegradability of dyes for further aerobic treatment.  相似文献   

12.
In the present study, fate of carbofuran in anaerobic environments and the adverse effects of carbofuran on conventional anaerobic systems were evaluated. Carbofuran degradation studies were carried out in batch reactors with varying carbofuran concentrations of 0 to 270.73 mg/L corresponding to a sludge-loading rate (SLR) of 2.12 x 10(-6) to 3.83 x 10(-3) g of carbofuran/g of volatile suspended solids (VSS)/d. Carbofuran concentration was reduced to undetectable levels at the end of 8 and 13 days in the batch reactors operated with a SLR of 2.12 x 10(-6) and 3.33 x 10(-5) g of carbofuran/g of VSS/d, respectively. Performances of two anaerobic reactors i.e. upflow anaerobic sludge blanket (UASB) and modified UASB (with tube settlers) were evaluated in the presence and absence of carbofuran using synthetic wastewater. In the absence of carbofuran, the soluble chemical oxygen demand (COD) removal efficiency in the conventional UASB reactor at 8 h and 6 h hydraulic retention time (HRT) was nearly 88% and 76%, respectively, whereas in modified UASB reactor it was increased to 90% at 8 h HRT and 78% at 6 h HRT. When 28 mg/L (SLR of 1.19 x 10(-2) g of carbofuran/g of VSS/d) of carbofuran was introduced in the reactors, the COD removal efficiency was reduced to 41% and 44% in conventional and modified UASB reactors respectively. However, the reactor could maintain around 80% COD removal efficiency at a carbofuran concentration of 7.84 mg/L (SLR of 3.64 x 10(-3) g of carbofuran/g of VSS/d). The reactor efficiency was also measured in terms of specific acetoclastic methanogenic activity (SMA). The toxic effect of carbofuran was reversible to a certain extent. Carbofuran removal efficiency in the conventional UASB reactor at carbofuran concentrations of 7, 13 and 28 mg/L were 40 +/- 3%, 27 +/- 3%, and 11 +/- 3%, respectively. In modified UASB reactor, carbofuran removal efficiency was almost uniform at 7 and 13 mg/L but it was reduced nearly by 56% at 28 mg/L. The major metabolite of carbofuran i.e. 3-keto carbofuran was found in all the reactors.  相似文献   

13.
Joo SH  Zhao D 《Chemosphere》2008,70(3):418-425
Highly stable Fe-Pd bimetallic nanoparticles were prepared with 0.2% (w/w) of sodium carboxylmethylcellulose (CMC) as a stabilizer. The effectiveness of the stabilized Fe-Pd nanoparticles was studied for degradation of two chlorinated pesticides (lindane and atrazine) under aerobic and anaerobic conditions. Batch kinetic tests showed that under anaerobic condition the nanoparticles can serve as strong electron donors and completely reduce 1 mgl(-1) of lindane at an iron dose of 0.5 gl(-1) or 1mg l(-1) of atrazine with 0.05 gl(-1) iron with a trace amount (0.05-0.8% of Fe) of Pd as a catalyst. In contrast, under aerobic condition, the nanoparticles can facilitate Fenton-like reactions, which lead to oxidation of 65% of lindane under otherwise identical conditions. Under aerobic condition, the presence of CMC reduced the level of hydroxyl radicals generated from the nanoparticels by nearly 50%, and thus, inhibited the oxidation of the contaminants. While the particle stabilization greatly enhanced the anaerobic degradation, it did not appear to be beneficial under aerobic condition. The degradation rate was progressively enhanced as the Pd content increased from 0.05% to 0.8% of Fe, and the catalytic effect of Pd was more significant under anaerobic condition. Under anaerobic condition, lindane is degraded via dihaloelimination and dehydrohalogenation, whereas atrazine is by reductive dechlorination followed by subsequent reductive dealkylation. Under aerobic condition, reactive oxygen species and hydroxyl radicals from the iron nanoparticles are responsible for oxidizing the pesticides. Lindane is oxidized via dechlorination/dehydrohalogenation, whereas atrazine is destroyed through dealkylation of the alkylamino side chain.  相似文献   

14.
Certain aromatic amines generated by the decolorization of some azo dyes are not removed substantially by conventional anaerobic–aerobic biotreatment. These aromatic amines are potentially toxic and often released in the wastewater of industrial plants. In this study, the fate and transformation of the naphthylaminesulfonic azo dye Reactive Black 5 (RB5) during different phases of a sequencing batch reactor were investigated. The major products of RB5 decolorization during the anaerobic phase include 2-[(4-aminophenyl)sulfonyl]ethyl hydrogen sulfate (APSEHS) and 1-2-7-triamino-8-hydroxy-3-6-naphthalinedisulfate (TAHNDS). During the aerobic phase, APSEHS was hydrolyzed and produced 4-aminobenzenesulfonic acid, which was further degraded via dearomatization. TAHNDS was transformed rapidly via auto-oxidation into TAHNDSDP-1 and TAHNDSDP-2, which were not further removed by the activated sludge during the entire 30-day aerobic phase. In contrast, different behaviors of TAHNDS were observed during the anoxic phase. The transformation of TAHNDS was initiated either by deamination or desulfonation reaction. TAHNDS was then converted into 3,5-diamino-4-hydroxynaphthalene-2-sulfonic acid, which was subsequently removed via ring cleavage reaction under aerobic condition. In conclusion, complete degradation of TAHNDS by activated sludge occurs only during anoxic/aerobic processes instead of the conventional anaerobic/aerobic processes.  相似文献   

15.
通过试验研究酸性媒介黄GG染料在厌氧、好氧条件下的生物降解机理、降解能力及共代谢降解效果。试验结果表明,厌氧菌能够通过葡萄糖共代谢作用很快降解酸性媒介黄GG;而好氧条件下经驯化活性污泥不能降解酸性媒介黄GG,经过较长时间驯化活性污泥能降解酸性媒介黄GG,但降解效果很差。葡萄糖浓度的升高对提高酸性媒介黄GG厌氧生物降解率有利,当葡萄糖浓度为2000mg/L时,40mg/L酸性媒介黄GC的12和60h厌氧生物降解率分别达到81.5%和93.5%。酸性媒介黄GG浓度对厌氧菌的生物降解能力也有影响。当葡萄糖浓度为2000mg/L,酸性媒介黄GG(浓度为20~100mg/L)的厌氧降解率最好,降解效率达到了94%,说明厌氧菌对酸性媒介黄GG的降解能力较好。  相似文献   

16.
采用厌氧UASB-好氧接触氧化工艺对汽车脱脂废水进行连续处理实验研究。结果表明,在脱脂废水进水COD浓度为6 000 mg/L,厌氧水力停留时间为3.4 d,好氧水力停留时间为2.5 d条件下,COD总去除率平均为93%,厌氧段平均值为38%。厌氧段可以提高出水的可生化性,厌氧-好氧接触氧化工艺效果要明显优于好氧工艺。  相似文献   

17.
Metolachlor [2-chloro-N-(2-methoxy-1-methylethyl)-2'-ethyl-6'- methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half-life of 27 days in field. The herbicide got leached down to 15-30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0-15 cm and 15-30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half-life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

18.
Bae HS  Yamagishi T  Suwa Y 《Chemosphere》2004,55(1):93-100
An anaerobic continuous-flow fixed-bed column reactor capable of degrading 3-chlorobenzoate (3-CBA) under denitrifying conditions was established, and its rate reached 2.26 mM d(-1). The denitrifying population completely degraded 3-CBA when supplied at 0.1-0.54 mM, but its activity was partly suppressed when 3-CBA was supplied at 0.89 mM. Nitrate was concomitantly consumed throughout the operation of the reactor, the amount of which was similar to or up to 35% higher than the theoretical stoichiometric value that was calculated by assuming that 3-CBA degradation is coupled with denitrification. Batch incubation experiments proved that nitrate is strictly required for 3-CBA degradation in the absence of molecular oxygen. The population also degraded 3-CBA aerobically. Benzoate and 4-CBA were degraded under denitrifying conditions as well as 3-CBA, but 2-CBA was not. Considering that the previously reported denitrifying 3-CBA-degrading cultures do not exhibit 4-CBA degradation under denitrifying conditions, nor aerobic 3-CBA degradation [FEMS Microbiol. Lett. 144 (1996) 213, Appl. Environ. Microbiol. 66 (2000) 3446], the microbial population developed in this experiment was physiologically versatile with respect to the utilization of both electron donors and electron acceptors.  相似文献   

19.
A case study was carried out to determine the bio-degradability of α-HCH in waste dumps polluted with HCH-isomers. Polluted soil was homogenized through a 2 mm sieve. The degradation of α-HCH (5300 mg kg?1) occurred under anaerobic as well as under aerobic conditions; the concentration decreased in 20 weeks with 35% and 55% respectively. Addition of glucose, glutamic acid and peptone to the polluted soil hardly affected the degradation rate of α-HCH.  相似文献   

20.
Gundi VA  Reddy BR 《Chemosphere》2006,62(3):396-403
The degradation of a widely used organophosphorus insecticide, monocrotophos (dimethyl (E)-1-methyl-2-methylcarbamoyl vinyl phosphate) in two Indian agricultural soils at two concentration levels, 10 and 100 microg g(-1) soil under aerobic conditions at 60% water-holding capacity at 28+/-4 degrees C was studied in a laboratory. The degradation of monocrotophos at both concentrations in black vertisol and red alfinsol soils was rapid accounting for 96-98% of the applied quantity and followed the first-order kinetics with rate constants (k) of 0.0753 and 0.0606 day(-1) and half-lives (t1/2) of 9.2 and 11.4 days, respectively. Degradation of monocrotophos in soils proceeded by hydrolysis with formation of N-methylacetoacetamide. Even three additions of monocrotophos at 10 microg g(-1) soil did not result in its enhanced degradation. However, there was cumulative accumulation of N-methylacetoacetamide in soils pretreated with monocrotophos to the tune of 7-15 microg g(-1) soil. Both biotic and abiotic factors were involved in degradation of monocrotophos in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号