首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crude oil and other liquid materials are transported in large quantities through pipelines. Pipelines are an efficient and safe transport way as compared to both rail and road transportation, both from the economical and environmental points of view. Nevertheless, loss of containment accidents can occur due to external action –a mechanical impact, for example– or to corrosion, aging, etc. Even though the frequency of such events is certainly very low, the effects and consequences on environment can be very important.The consequences of accidents in pipelines can be efficiently reduced through a suitable design of the whole system. One of the points which must be decided in the design is the installation of blocking valves at appropriate distances, so that emergency shutdowns can interrupt the flow of substance and isolate the section where the loss of containment has taken place. In the case of pipe rupture the amount released is therefore limited to the content between two consecutive valves, usually placed according to heuristic criteria. However, if too many valves are used, the capital cost of equipment increases excessively, and if too few are used, the risk of serious accidents increases.In this paper we consider the possibility of improving the design of such systems by applying risk-based optimization criteria. We propose an optimization methodology to solve this conflict by means of an objective function that analyzes the variations in overall costs, including the cost of the investment (with specific reference to blocking valves) and the cost of accidents. The result is an optimum situation in which costs are kept to a minimum. As an example, we apply the methodology to the transportation of gasoline by pipeline.  相似文献   

2.
This paper presents a method based on a genetic algorithm for optimizing process plant layout. The relative location of main process units is determined to minimize an annual cost function including the cost of material transfer between process units (piping and pumping costs), land cost, and the expected annual loss resulting from damage to each secondary unit caused by primary accidents occurring in nearby process units. This method is an improvement over previous attempts using genetic algorithms or mathematical programming techniques to optimize plant layout, which neglected pumping costs and included safety issues by evaluating the infringement of predefined safety distances only. In this approach the operating cost of material transfer is included and the likelihood of accidents is taken into account thus providing good practical solutions to the plant layout problem incorporating more realistic cost functions and constraints. In the paper, after discussing the structure of the annual cost function and describing the working logic of the layout generating algorithm, a case study is described to demonstrate the effectiveness of the proposed methodology.  相似文献   

3.
This article follows an earlier one in which four criteria and four bases for the development of an indirect-cost calculation model adapted to the accuracy requirements and time constraints of workplace decision-makers were established. A two-level model for calculating indirect costs using process mapping of the organizational response to a workplace accident is presented. The model is based on data collected in interviews with those employees in charge of occupational health and safety in 10 companies of various sizes in different industry sectors. This model is the first to use process mapping to establish the indirect costs of workplace accidents. The approach allows easy identification of the duration and frequency of actions taken by stakeholders when a workplace accident occurs, facilitates the collection of the information needed to calculate indirect costs and yields a usable, precise result. A simple graphic representation of an organization's accident processes helps the user understand each accident's cost components, allowing the identification and reduction of inefficiencies in the overall process. Impact on Industry: By facilitating data collection and shortening the time needed to assess indirect costs of workplace accidents, this indirect cost calculation tool is better suited for workplace use than those currently available.  相似文献   

4.
Process plant safety is a critical indicator of organizational performance. Adequate investment into safety practices to avoid future accident cost is therefore a beneficial strategy. The current approach to such investments in the process industry is driven largely by simple risk-based heuristics, insurance market premiums, organizational culture and management judgment. There is, however, an absence of an overarching methodology to assist such an effort. Therefore, there is a need for developing a robust decision-making framework for enabling systematic and optimal allocation of financial resources across all significant risk elements within a process plant.The present work proposes a safety investment optimization (SIO) framework for a typical process plant. Such an optimization approach targets maximal reduction of risk values across all potential hazards within the constraint of a given safety investment budget at the incipient stage of establishing a plant such that it saves future cost to company by reducing the risk from accidents. At the same time the framework takes into account the need to comply with the regulatory requirements imposed by the government. Additionally, access to insurance market as a strategy to transfer risk is also integrated. Finally, the residual risks are managed through investments in selective safeguards while ensuring that the benefits over-weigh the cost of such an exercise. For illustrating the application of the framework, a representative process plant with a select number of risk scenarios is chosen and all steps suggested by the framework are demonstrated quantitatively. It is anticipated that the proposed SIO framework will help optimal resource allocation for managing the risks implicit in a typical process plant.  相似文献   

5.
Quantitative Risk Assessment (QRA) has been a very popular and useful methodology which is widely accepted by the industry over the past few decades. QRA is typically carried out at a stage where complete plant has been designed and sited. At that time, the opportunity to include inherent safety design features is limited and may incur higher cost. This paper proposes a new concept to evaluate risk inherent to a process owing to the chemical it uses and the process conditions. The risk assessment tool is integrated with process design simulator (HYSYS) to provide necessary process data as early as the initial design stages, where modifications based on inherent safety principles can still be incorporated to enhance the process safety of the plant. The risk assessment tool consists of two components which calculate the probability and the consequences relating to possible risk due to major accidents. A case study on the potential explosion due to the release of flammable material demonstrates that the tool is capable to identify potential high risk of process streams. Further improvement of the process design is possible by applying inherent safety principles to make the process under consideration inherently safer. Since this tool is fully integrated with HYSYS, re-evaluation of the inherent risk takes very little time and effort. The new tool addresses the lack of systematic methodology and technology, which is one of the barriers to designing inherently safer plants.  相似文献   

6.
Each year more people die from work-related diseases than are killed in industrial accidents. Therefore it is essential to evaluate occupational health aspect during the process design. Early evaluation of safety, health, and environmental (SHE) performance is advantageous, since the opportunities to make the process inherently benign are greater and the cost therefore lower. The methods for occupational health assessments need to be tailored to specific design stages, since the data availability is changing as the design proceeds. In this paper, an index-based method called the Occupational Health Index (OHI) is presented for the basic engineering stage. The OHI is the final of the three methods in series proposed for health assessment in development and design stages. The OHI is based on the information available in piping and instrumentation diagrams (PIDs) and the plot plan. Four health aspects are considered; chronic inhalation risks to noncarcinogens and carcinogens, acute inhalation risk, and dermal/eye risk. The index is demonstrated on separation system of a toluene hydrodealkylation process. The assessment results allow the level of occupational health risks to be evaluated, the sources of exposures be detected, and corrective actions taken in a focused way.  相似文献   

7.
Inherent safety is a proactive approach for hazard/risk management during process plant design and operation. It has been proven that, considering the lifetime costs of a process and its operation, an inherently safer approach is a cost-optimal option. Inherent safety can be incorporated at any stage of design and operation; however, its application at the earliest possible stages of process design (such as process selection and conceptual design) yields the best results.Although it is an attractive and cost-effective approach to hazard/risk management, inherent safety has not been used as widely as other techniques such as HAZOP and quantitative risk assessment. There are many reasons responsible for this; key among them are a lack of awareness and the non-availability of a systematic methodology and tools.The inherent safety approach is the best option for hazard/risk management in offshore oil and gas activities. In the past, it has been applied to several aspects of offshore process design and operation. However, its use is still limited. This article attempts to present a complete picture of inherent safety application in offshore oil and gas activities. It discuses the use of available technology for implementation of inherent safety principles in various offshore activities, both current and planned for the future.  相似文献   

8.
The construction of chemical clusters whereby a variety of chemical plants are located next to each other provides great economic benefits. However, in such clusters, due to the mere scale on which hazardous materials are processed, stored and handled, the potential of various accidents is much higher than in single companies. Furthermore, the close proximity of process installations and storage tanks in such areas gives rise to the risk of domino effects. Therefore, land use planning and layout design has always been a challenge within such clusters.In this paper, a Quantitative Risk Assessment (QRA) is carried out and used as a decision making tool to evaluate the acceptability of constructing a new chemical plant adjacent to an existing one. For this purpose, standard parameters such as individual risk and societal risk were quantified, before and after the new plant would come into operation. Given the experience of past accidents in the process industries, the likelihood of domino accidents in the two neighboring plants has also been analyzed.  相似文献   

9.
It has been claimed that the high accident rate in the chemical process industry is due to poor dissemination of accident knowledge that affects directly the level of learning from accidents. In response to this situation, this paper utilized past accident knowledge as a basis to develop a safety oriented design tool whereby the accident information were directly disseminated into plant design. The method was developed based on our previous accident analysis of design error in which the common design errors were ranked in accordance to their frequency and its origins during normal plant design project. Based on the design error ranking and its origin at a specific design phases, a method for design error detection is proposed. The method is expected to be able to identify the possible design error and its causes throughout chemical process development and design. The main objective is to trigger safe design thinking at the specific design phases so that appropriate action for risk reduction could be timely implemented. The Bhopal and BP Texas tragedies are used as case studies to test and verify the method. The proposed method can detect up to 74% of design errors.  相似文献   

10.
Mathematical models used to optimize the process plant layout (PPL) with risk reduction have four primary objectives, which are related to the minimization of land, pumping (pipe system), protection system devices, and risk costs. Moreover, these models are of two types: continuous plane models (CPM) and grid-based models (GBM); however, the nonconvexity of the CPM models makes difficult to achieve the global optimum, because it is formulated as Mixed-Integer Nonlinear Programming (MINLP). Thus, the risk map approach has been implemented with the grid-based models to solve problems of process plant layout focused on finding the best possible solution. However, these risk map formulations present important limitations, mainly related with the use of protection devices and the occupied area. Therefore, a new GBM-MILP formulation is proposed to optimize the selection of protection devices and minimize the occupied area. The risk is reduced through the investment on safety devices instead of considering the increase of separation distances. The proposed model was used to solve the layout problem of an ethylene oxide process, and the results was compared with a process layout reported in the literature. The results show that the model can provide the best possible solution; however, the time spent in the calculation is considerably greater than that reported for continuous plane models. Finally, the model can be used by decision-makers to evaluate different layout options for several explosion scenarios, during the early stages of the plant design.  相似文献   

11.
One of the most important points in the design of inherently safe processes is to estimate reliable distances among process units at preliminary stages of the plant project to minimize losses and damages caused by the potential occurrence of technological accidents. Therefore, in this paper the achievement of simple, general, dimensionless and reliable equations (Simple Dimensionless Models SDMs) for the direct estimation of safety distances considering the occurrence of BLEVE (Boiling Liquid Expanding Vapour Explosion) event, is proposed. The developed models directly relate safety distances with critical design/operation variables (involved substance, vessel volume, target vulnerability and explosion temperature), which are easily accessible at early stages of the plant project. SDMs are achieved by analysing the influence of these simple variables on the safety distances, which are estimated using a selected rigorous model (Reference Model RfM). This task is simplified by the incorporation of the Jakob Number as an input variable, allowing to obtain dimensionless models and simultaneously an adequate representation of the explosion conditions and the involved substances. As result, the achieved SDMs demonstrate a particularly good fit with respect to the RfM estimations and, at the same time, reliability and versatility. As it is shown in the analysed study cases (involving critical decision variables for the process design and the system safety), the SDMs prove to be also accurate, general, and easily incorporable into more complex optimization problems (QRA analysis, design of emergency plans, safety distance estimation to minimize the probability of domino effects, optimal layout designs, among others).  相似文献   

12.
Though a number of occupational accidents have occurred amongst the working population in Mauritius, no study has been carried out to measure the costs associated with such accidents to the best of our knowledge. This study bridges this gap by measuring the economic costs of occupational accidents by using both quantitative and qualitative approaches. The results show that occupational accidents result in costs amounting to nearly Rs. 168 mn of which a major part is accounted for, by loss in productivity. Alongside the highest rate of accidents took place within small enterprises and younger workers are the one taking higher risks mainly due to lack of knowledge and risk awareness. The findings also reveal that only 4% employers believe that investment in safety and health is important for maintaining good business partly because most of the costs are borne by the state. Such a situation therefore requires the need for awareness on practical health and safety systems and procedures among both employees and employers with a view to prevent accident and injuries.  相似文献   

13.
This study aims to provide the approach for inherent safety design of onshore LNG plants to be applied at the very early stages (concept definition phase) of the project development. Onshore LNG plant development project starts from the “Concept Definition” phase, where financial feasibility is estimated and major conditions, such as site location and plant foot print, are set.The inherent safety design basic criteria and design measures should be identified and selected when setting the basic conditions during the Concept Definition phase of the project development, such as the site location (relative location from populated areas), site condition (prevailing wind direction) and plant production capacity (number of process train, number of product tanks). The safety measures, which are usually not fully developed at the project early stages in the current design execution practices, are the emergency systems, which mitigate an accident escalation, the modularized plant and layout, and the tank selection.The inherent safety design measures discusses in this paper were identified based on the categories of plot plan, emergency system, and module plant application.The proposed approach will contribute to improve inherent safety design of onshore LNG plants and it will also yield schedule and cost benefits.  相似文献   

14.
孙爱冬  周艳 《安全》2021,42(1):62-68
为优化企业安全管理,提高安全管理效率,减少事故的发生和降低事故造成后果的严重程度,本文根据双重预防机制的要求和对企业安全管理的研究,采用危险源辨识、事故因果连锁论、安全风险分级和层次分析等方法,通过对可能导致事故发生的各阶段子事件进行分析,研究系统性的危险源辨识、辨析临界事故发生的紧急情况事件、各事件安全风险分级标准和安全管理资源分配等问题。结果表明:企业安全管理体系的优化理论可结合企业实际情况,形成企业自查自改自治的闭环安全管理体系,提高企业对风险管控的效果;并且优化后的安全管理方法对管理资源的利用更为科学,可提高企业安全管理工作的效率。  相似文献   

15.
A tool (called CESMA) was developed to carry out cost–benefit analyses and cost-effectiveness analyses of prevention investments for avoiding major accidents. A wide variety of parameters necessary to calculate both the costs of the considered preventive measures and the benefits related with the avoidance of accidents were identified in the research. The benefits are determined by estimating the difference in (hypothetical) major accident costs without and with the implementation of a preventive measure. As many relevant costs and benefits as possible were included into the tool, based on literature and expert opinion, in order to be able to deliver an all-embracing cost–benefit analysis and cost-effectiveness analysis to assist in the investment decision process. Because major accidents are related to extremely low frequencies, the tool takes the uncertainty of the unwanted occurrence of a major accident into account through the usage of a so-called ‘disproportion factor’. Compared with existing software, the CESMA tool is innovative by striving for an as-accurate-as-possible picture of costs and benefits of major accident prevention, and taking the uncertainties accompanying disastrous events into consideration. Furthermore, an illustrative example of CESMA is presented in the paper.  相似文献   

16.
Maintenance policy selection is a multiple criteria decision making. The criteria often considered are cost and reliability of maintenance. There has been a growing interest in using risk of accidents as a criterion for maintenance selection. This paper presents an approach of maintenance selection based on risk of equipment failure and cost of maintenance. Analytic hierarchy process (AHP) and goal programming (GP) are used for maintenance policy selection. A case study in a benzene extraction unit of a chemical plant was done. The AHP results show that considering risk as a criterion, condition based maintenance (CBM) is a preferred policy over time-based maintenance (TBM) as CBM has better risk reduction capability than TBM. Similarly, considering cost as a criterion, corrective maintenance (CM) is preferred. However, considering both risk and cost as multiple criteria, the AHP–GP results show that CBM is a preferred approach for high-risk equipment and CM for low risk equipment.  相似文献   

17.
我国在建公路隧道工程数量增长迅速,施工安全事故时有发生,因此通过风险评估实现施工过程的风险控制就显得非常重要。在此背景下,交通运输部出台了《公路桥梁和隧道工程施工安全风险评估指南(试行)》,而在实际应用过程中,该评估指南无法完全适应多变的工程实际。针对该问题,在对隧道施工安全风险评估的各类评估方法及其适用性进行详细研究的基础上,将该评估指南与国内外其他相关成果和做法进行分析比对,指出该评估指南存在的不足之处,进一步提出相关优化与修订建议;最后,以湖南某高速公路隧道洞口坍塌事故为例,利用提出的施工前专项风险评估方法,综合运用数值模拟计算与事故后果当量估计,计算相应的风险等级,所得到的结果与实际情况更为接近,进一步说明本文所提优化方法的合理性和可操作性。  相似文献   

18.
This study introduces a method that selects equipment, so as to reach the required unavailability level, by carrying out an optimization analysis which considers the reliability data and cost of the equipment. A more practical optimization problem has been formulated using the objective function based on the discrete function and constraints.For the cooling system of a jacketed reactor, an optimization analysis was performed on equipment that have different failure rates depending on their costs in order to reach the target unavailability level required by the system. The integer programming was used for this optimization analysis. When the method developed through this study is used, cost can be reduced and the target level of the system unavailability can be reached by selecting proper equipment for chemical plants through the optimization analysis. This is more cost efficient than the former method of selection, which does not perform any economical analysis thus leading to the usage of overly expensive equipment with low failure rates.  相似文献   

19.
In many design organisations responsibility for a project is passed on from one group of people to another. The research chemists develop a process and then pass it on to the process design group who blame the chemists for their ignorance of what is practicable. The project is then passed to the mechanical engineering group who develop the detailed design while the electrical, instrument and other specialized groups add their contributions. The project then passes to the construction team and finally to the team who will start up and operate the plant. These different groups may be in different buildings or places and may rarely or never speak to each other.Many accidents and operating problems have arisen as a result of such “pass the parcel” organisation. Some are described. To avoid these problems representatives of all the various groups should meet regularly as the project progresses. Each group is then able to suggest changes that will make the design easier for them and can comment on features which will increase their costs. Everyone will gain some knowledge of other groups' problems.  相似文献   

20.
The accident rate in the chemical process industry (CPI) has not been decreasing although majority of accident causes have been identified and could have been prevented by using existing knowledge. These recurring accidents show that the existing knowledge has not been used effectively. In this paper, accident knowledge learned from earlier accident analyses are utilized to predict the common design errors during chemical plant design. An accident prevention approach throughout process design life cycle is proposed for a safer design consideration where designers are guided to identify common design errors, accident contributors and critical points to look for. The accident prevention approach has been applied to analyze the BP Texas City Refinery Explosion and Fire tragedy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号