首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
Kim H  Townsend T 《Chemosphere》2007,67(6):1252-1257
Research was conducted to investigate the potential impact of CCA-treated wood and other arsenic-free Cu-based preservative-treated wood on microorganisms, involved in the anaerobic decomposition of waste in landfills. Wood preservatives used included alkaline copper quat (ACQ), copper citrate (CC), copper boron azole (CBA), copper dimethyldithiocarbamate (CDDC), and chromated copper arsenate (CCA). The biochemical methane potential (BMP) assay was used to estimate the possible impacts. The methane yields of mixtures of preservative-treated wood or untreated wood with cellulose (group 1) and these wood samples only (group 2) were determined. An analysis of variance (ANOVA) test found that there were no significant differences among methane yields results in either group 1 or group 2, at the 0.05 level of significance. The results indicate that under the conditions tested, none of the treated wood products evaluated were toxic to the methane-producing organisms. At the end of the assays, test bottle contents were analyzed for Cu, Cr, and As. When the fraction of each metal in the solution (relative to original metal in the wood, leachability %) was examined, As was present at the great extent. The leachability of As was in the range from 15.1% to 21.7% while relatively low leachability (1.7-7.6%) of Cu was observed.  相似文献   

2.
PCDD/PCDF were determined in solid samples from wood combustion. The samples included grate ashes, bottom ashes, furnace ashes as well as fly and cyclone ashes. The solid waste samples were classified into bottom and fly ash from native wood and bottom and fly ash from waste wood. For each of the four classes concentration distribution patterns from individual congeners, the sums of PCDD/PCDF and the international toxicity equivalents (I-TEQ) values are given. The I-TEQ levels of fly ash from waste wood burning can be approximately up to two thousand times higher than the values from fly ashes of natural wood. The I-TEQ levels in bottom ashes from waste wood combustion systems are as low as the corresponding ashes from the combustion of native wood. Grate ash samples from waste wood combustion systems with low carbon burnout show high levels of PCDD/PCDF.  相似文献   

3.
Impacts of an old contaminated sawmill site located in Eastern Finland were studied, with emphasis on transportation and bioaccumulation of wood preservatives in the surrounding water system. To assess the transportation of chlorophenols and chromated copper arsenate (CCA) from the sawmill to the nearby lake, the concentrations of these compounds in selected sediment samples were analyzed. To assess the contribution of a pulp mill further upstream, the concentration of extractable organic halogens (EOX) was analyzed. Bioaccumulation of wood preservatives from sediments was examined using Lumbriculus variegatus as test organism. In sediments collected from the sawmill area, concentrations of chlorophenols, arsenic, chromium and copper were high. In the surrounding area the concentrations of these compounds were slightly elevated at some sampling points but were mostly within the natural range of variation. Thus, it can be concluded that transportation of wood preservatives from the sawmill area to its surroundings is fairly low. However, 60 microg/l of arsenic and 50 microg/l of copper were found in water taken from a brook that runs through a landfill area of the sawmill to the nearby river, and the concentration of arsenic in the surface sediment at one sampling point in the lake was slightly elevated. The total amount of organohalogens in sediment was higher in the river and the lake than in the sawmill area. Of all the wood preservatives studied, only arsenic was found to bioaccumulate in present conditions, reaching a tissue concentration of 362 microg/g dw in organisms exposed for 28 days to sediment from the brook. High concentration of arsenic in oligochaeta tissue was related to high concentration of arsenic in the pore water.  相似文献   

4.
The leachability of heavy metals such as chromium (Cr), lead (Pb) and cadmium (Cd) from the ash material obtained from waste combustion was studied. The effects of ash surface topography and morphology on the leachability of these elements were examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM (scan size 10 x 10 microns) and SEM images of the simulated ash pellet obtained at various operating temperatures (1000, 1400 and 1500 degrees C) showed significant microstructural and topographical changes. Ash pellets treated at 1000 degrees C contain porous and non-continuous surface. On the other hand, the ash pellet obtained at higher temperature (1500 degrees C) was found to contain a smooth, continuous and non-porous surface. The AFM height profile studies indicated that the top surface variation of the ash pellet at 1000, 1400 and 1500 degrees C were found to be -40.0 to 25.5, -3.7 to 4.7 and -0.10 to 0.66 nm respectively. The SEM analyses also confirmed the presence of smooth, non-porous outer surface of ash formed at 1500 degrees C. In addition, it also showed the presence of compact and rigid interior for the same ash pellet. The leachability of the heavy metals was determined using standard toxicity characteristic leaching procedure (TCLP) test and the samples were analysed using atomic absorption spectroscopy. The results showed that the TCLP leaching ratios of the heavy metals were Cr = 0.30, Pb = 0.05 and Cd = 0.09 at 1000 degrees C. However, the ash obtained at 1400 degrees C showed negligible heavy metals leaching ratio while at 1500 degrees C no leachability was detected (TCLP concentration dropped to nondetectable levels). The use of high temperature treatment enabled the immobilization of heavy metals in the ash preventing their leaching. Such ash can be considered as a non-hazardous material for reuse or safe disposal.  相似文献   

5.
In this work, ash generated by the combustion of wood in a central heating plant was used to remove and permanently store by accelerated carbonation CO2 contained in a gas mixture simulating biogas. The process was studied as an alternative treatment to the ones currently available on the market for biogas upgrading. The process was investigated at laboratory scale by setting up a facility for directly contacting the wood ash and the synthetic biogas in a fixed bed reactor. The process was able to completely remove CO2 during its initial phase. After about 30 h, CO2 started to appear again in the outlet stream and its concentration rapidly increased. The specific CO2 uptake achieved in solid carbonate form was of about 200 g/kg of dry wood ash. This value is an order of magnitude higher than the ones found for waste incineration bottom ash carrying out similar experiments. The difference was ascribed to the physicochemical properties of the ash, characterized by a fine particle size (d50 <?0.2 mm) and high content of reactive phases with CO2 (e.g., Ca hydroxides). The leaching behavior of the wood ash was examined before and after the accelerated carbonation process showing that the release of several elements was lower after the treatment; Ba leaching in particular decreased by over two orders of magnitude. However, the release of the critical elements for the management of this type of residues (especially Cr and sulfates) appeared not to be significantly affected, while V leaching increased.  相似文献   

6.
In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation.  相似文献   

7.
Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces of incompletely combusted wood rich in Cr and Ca, and irregular particles rich in Si, Al and K. Cr was also found incorporated in silica-based matrix particles. As was associated with Ca in porous (char) particles, indicating that Ca-arsenates had been formed during combustion. Cu was associated with Cr in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles - indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic treatment. Instead particles rich in Ca and S were now found, indicating precipitation of Ca-sulphates due to addition of sulphuric acid in connection with the electrodialytic treatment. Cu and Cr were still found associated with incompletely combusted wood particles and incorporated in matrix particles. Chemical analyses of untreated and treated ash confirmed that most As, but only smaller amounts of Cu and Cr was removed due to the electrodialytic extraction. Overall metal contents in the original ash residue were: 1.4 g As, 2.76 g Cu and 2.48 g Cr, after electrodialytic extraction these amounts were reduced by 86% for As, 15% for Cu and 33% for Cr.  相似文献   

8.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produced organic and inorganic chemicals, and petroleum refineries. Following a gross assessment of heavy metals in the community soils (see Part I of this two-part series), leaching tests were performed on specific soils to elucidate heavy metal-associated mineral fractions and general leachability. Leaching experiments, including the Toxicity Characteristic Leaching Procedure (TLCP) and column tests, and sequential extractions, illustrated the low leachability of metals in East St. Louis soils. The column leachate results were modeled using a formulation developed for fly ash leaching. The importance of instantaneous dissolution was evident from the model. By incorporating desorption/adsorption terms into the source term, the model was adapted very well to the time-dependent heavy metal leachate concentrations. The results demonstrate the utility of a simple model to describe heavy metal leaching from contaminated soils.  相似文献   

9.
Bottom ash that was the result of the combustion of chromated copper arsenate (CCA) treated wood under controlled fire conditions showed an increase of several orders of magnitude in the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), compared to that of untreated timber. Wood that has been pressure treated with CCA contains copper (II), which is known to catalyse the so-called de novo formation of PCDD/Fs. Comparable levels of PCDD/Fs would be expected in residual ash from burning CCA-treated wood in backyard fires, stoves and wood heaters, as a consequence of similar combustion conditions.  相似文献   

10.
The purpose of this study was to characterize the emissions of a large number of chemical compounds emitted from birch wood combustion in a wood stove. Birch wood is widely used as fuel in Swedish household appliances. The fuel load was held constant during six experiments.Particles <2.5 μm in diameter were collected and the size distribution of the particles was measured. The results were compared to the size distribution in road traffic emissions. It could be seen that the number distribution differed between the sources. In traffic exhaust, the number of particles maximized at 20 nm, while the number distribution from wood burning ranged from 20 to 300 nm. The ratio K/Ca on particles was found to be significantly different in wood burning compared to road dust, range 30–330 for the former and 0.8±0.15 for the latter. The source profile of common elements emitted from wood burning differed from that found on particles at a street-level site or in long-distance transported particles.The ratio toluene/benzene in this study was found to be in the range 0.2–0.7, which is much lower than the ratio 3.6±0.5 in traffic exhaust emissions.Formaldehyde and acetone were the most abundant compounds among the volatile ketones and aldehydes. The emission factor varied between 180–710 mg/kg wood for formaldehyde and 5–1300 mg/kg wood for acetone. Of the organic acids analyzed (3,4,5)-trimethoxy benzoic acid was the most abundant compound. Of the PAHs reported, fluorene, phenanthrene, anthracene, fluoranthene and pyrene contribute to more than 70% of the mass of PAH. Of the elements analyzed, K and Si were the most abundant elements, having emission factors of 27 and 9 mg/kg wood, respectively.Although fluoranthene has a toxic equivalence factor of 5% of benzo(a)pyrene (B(a)P), it can be seen that the toxic potency of fluoranthene in wood burning emissions is of the same size as B(a)P. This indicates that the relative carcinogenic potency contribution of fluoranthene in wood smoke would be about 40% of B(a)P.  相似文献   

11.
为了考察燃料燃烧过程中重金属的迁移转化规律,对污泥、煤与木屑及其混合物在不同温度下氧气中燃烧灰渣中的重金属元素进行分析。结果表明,燃料中重金属在高温燃烧时表现出不同的挥发特性,大部分元素随着温度的升高挥发率增加,其中Cd、Pb和Zn元素挥发性较强,Cr、Cu和Ni挥发性较弱。污泥与木屑混合燃烧灰渣仍以污泥灰为主,重金属含量与污泥灰相近,污泥中混入煤后使灰中大部分重金属含量有所降低。燃烧过程会改变重金属存在形态,污泥与煤原料中以酸溶态和可还原态存在的重金属含量较高,具有较强的生物有效性和迁移性,而燃烧灰渣中酸溶态和可还原态含量显著下降,混合燃烧灰渣中除As外的其他重金属几乎全部以残渣态存在,其含量达到90%以上,焚烧过程有效降低了燃料灰渣中重金属的生物毒性。  相似文献   

12.
Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (<40 mg) in all CCA-treated wood samples. Copper leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals' leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers.  相似文献   

13.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produced organic and inorganic chemicals, and petroleum refineries. Following a gross assessment of heavy metals in the community soils (see Part I of this two-part series), leaching tests were performed on specific soils to elucidate heavy metal-associated mineral fractions and general leachability. Leaching experiments, including the Toxicity Characteristic Leaching Procedure (TLCP) and column tests, and sequential extractions, illustrated the low leachability of metals in East St. Louis soils. The column leachate results were modeled using a formulation developed for fly ash leaching. The importance of instantaneous dissolution was evident from the model. By incorporating desorption/adsorption terms into the source term, the model was adapted very well to the time-dependent heavy metal leachate concentrations. The results demonstrate the utility of a simple model to describe heavy metal leaching from contaminated soils.  相似文献   

14.
A laboratory leaching test has been used to predict the potential mobility of As, Se, Pb and Cd in landfilled fly ash produced by coal combustion and refuse incineration. These waste residues also formed the basis of a speciation study in which the valency states of As and Se and the chemical forms of Pb and Cd have been determined. Selenium displayed the greatest leachability in each ash type, despite being present at relatively low concentrations in both materials. Substantial amounts of other trace elements were also leached, particularly Pb and Cd from refuse ash and As from coal ash. Chemical associations of Pb and Cd were examined by a sequential extraction procedure. In coal fly ash, both elements were mostly present in the residual fraction, while in refuse ash these elements were mainly associated with the exchangeable fraction. Water-soluble extracts of coal fly ash contained As exclusively as As(V); high background interference prevented the detection of water-soluble As in refuse ash. Selenium was present largely as Se(IV) in aqueous extracts of both ash types. The value of speciation techniques and leaching tests as predictors of environmental behaviour is discussed in conjunction with results of routine trace element determinations and plant uptake studies.  相似文献   

15.
Kim YJ  Lee DH  Osako M 《Chemosphere》2002,47(6):599-605
The effect of dissolved humic matters (DHM) on the leachability of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) in fly ash was studied theoretically and in laboratorial condition to verify the previous results for pilot and field experiment of incineration residues landfill. In theoretical review, it was shown that DHM could influence the actual solubility and leachability of PCDD/F. The higher concentration of DHM showed the higher leachability of PCDD/F. In the leaching test, three different DHM concentrations and pHs of solutions were adopted to fly ash samples imaging the various characteristics of municipal solid waste leachate. It was proved experimentally that the leachability of PCDD/F increased with increasing DHM concentration in all pH conditions. The highest leachability was shown at the highest pH. Isomer distribution patterns of PCDD/F in all leachates were similar in all pH conditions. It backed up the distribution theory of PCDD/F between DHM and water.  相似文献   

16.
Speciation and mobility of cadmium in straw and wood combustion fly ash   总被引:3,自引:0,他引:3  
Two fly ashes from biomass combustion have been analysed regarding cadmium speciation and mobility. A fly ash from straw combustion contained 10 mg Cd/kg dry matter, and around 50% of the cadmium was leachable in water. The possible main speciation of cadmium in this fly ash was CdCl2. When adding this fly ash to agricultural soil a threat for groundwater contamination and plant uptake is existing. A fly ash from wood chip combustion had 28.6 mg Cd/kg dry matter. In this fly ash, the cadmium was bound more heavily, with only small amounts of cadmium leached in mild extractants. A possible speciation of cadmium in this fly ash was as oxide or as CdSiO3. Long-term effects and accumulation of cadmium could be a problem when adding this fly ash to agricultural or forest soils.  相似文献   

17.
Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ~50 t ha?1, and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered.  相似文献   

18.
Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.  相似文献   

19.
Environmental Science and Pollution Research - The effectiveness of compost, peat-calcite, and wood ash to remove Ni from a circum-neutral-contaminated mine water was tested in continuous flow...  相似文献   

20.
Osako M  Kim YJ 《Chemosphere》2004,54(1):105-116
The leaching behavior of dioxins from raw and treated fly ash (FA) under the coexistence of several types of surface-active agents (SAAs) was examined by batch leaching tests to obtain significant information not only for evaluating leachability of dioxins as hydrophobic organic pollutants (HOPs) under the severe environment in which SAAs coexist, but also for evaluating the reduction efficiency of dioxin-leachability from the treated FA. Enhancement of dioxin-leachability by sufficient addition of SAAs was observed in the leaching test, whereas addition of a smaller quantity depressed the leachability. The higher the degree of chlorination in PCDDs/PCDFs homologues, the more effectively the SAAs enhanced the leachability. Moreover, there was a large difference in the potential for leachability enhancement due to each surface activity, based on critical micelle concentration (CMC) of the SAAs although Aldrich humic acid enhanced the leachability at a much lower concentration than CMC. A comparison of the leachability in FA treated by several methods showed a difference in the reduction efficiency of leachability, depending on the adsorption of SAAs by each treated FA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号