首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Industrial and new energy applications of ionic liquids (ILs) may have to be used at high temperatures conditions, such as in batteries and fuel applications, which may cause thermal hazards. However, there are few studies on the thermal hazards of ILs. To ensure the thermal safety of ILs processes, three commonly used ILs were selected for analysis: 1-butyl-3-methylimidazolium nitrate ([Bmim]NO3), 1-butyl-2,3-dimethylimidazolium nitrate ([Bmmim]NO3), and 1,3-dimethylimidazolium nitrate ([Mmim]NO3). The process hazards under adiabatic conditions demonstrated that [Bmmim]NO3 and [Mmim]NO3 have extensive explosion hazards. The self-reaction characteristics determined by the isothermal test indicated that the ILs are nth reactions, and the thermal decomposition features were also determined by thermogravimetric analysis. The data were obtained with a nonlinear thermodynamic model and used to establish the basic thermal hazards of the three ILs. In addition, based on the thermal equilibrium theory, the critical safety parameters can be inferred. The effects of heat transfer in 25.0 g and 50.0 g containers were discussed. The results show that [Mmim]NO3 will produce a thermal runaway reaction at a lower temperature (<100 °C) and has the shortest reaction time (<1 day), which means [Mmim]NO3 is considered to be the most hazardous material among the three ILs studied.  相似文献   

2.
Ionic liquid, an organic molten salt, has efficient flame-retardant performance. Few researchers have attempted to study its flame-retardant mechanism. Moreover, thermal stability and pyrolysis products have a great impact on the flame retardancy. Therefore, this paper focused on the phosphate ionic liquid of 1-butyl-3-methylimidazolium dibutyl phosphate ([Bmim][DBP]) and analyzed its thermal decomposition products and characteristics. The major bond energies of [Bmim][DBP] were calculated using B3LYP/6–311++G(d,p)//M06–2X/6–311++G(d,p) level. The experimental results show that the pyrolysis products were as followed: alkane or alkene with a carbon chain length of 1–4; imidazole and its derivatives; esters. Furthermore, Gas chromatography-mass spectrometer and Fourier transform infrared spectrometer were utilized to measure the gaseous products and solid phase products of [Bmim][DBP], which were obtained during thermogravimetric analysis. The results of theoretical and experimental analysis were highly consistent. Finally, the possible flame-retardant mechanism of [Bmim][DBP] was proposed.  相似文献   

3.
Possible changes in the oxidation behaviour of coal in the spontaneous combustion site of re-opened sealed heating were studied. Two samples of bituminous coal and three types of coal pre-treatment procedures were applied to simulate in situ conditions at the “spon-com” site: i) pre-oxidation of coal, ii) pre-heating of coal under inert gas, and iii) immersion of pre-heated coal in liquid water. Pre-treated samples were then examined for the production rate of the indication gases evolved during oxidation and for oxidation heat effects. Two main conclusions were drawn with respect to oxidation of the coal in re-opened sealed heating: i) carbon monoxide and unsaturated hydrocarbons maintain their relevance as spontaneous combustion indication gases, however, increased production of both carbon oxides can be expected; ii) coal in the extinguished spontaneous combustion site gains increased susceptibility to the self-heating process.  相似文献   

4.
Ionic liquids (ILs) are known as room temperature molten salts, which are considered green replacement to traditional organic solvents. The fire hazards of traditional organic solvents mainly depend on the combustibility of their vapors, thus ILs are generally regarded as nonflammable owing to their low volatility. However, recent studies show that ILs may combust due to the potential hazards of thermal decomposition, indicating the issue of fire and explosion of ILs are eager to be evaluated during the applications. In this study, the fire and explosion hazards of IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C6mim][NTf2]) are explored in different aspects. The traditional definition of the flammability for the common organic solvent is not thoroughly applicable to [C6mim][NTf2] due to the low volatility. Furthermore, the common definition of reactivity for traditional organic solvents also fails to apply, because the decomposition reaction is indeed an endothermic reaction. However, the auto-ignition of some decomposition products will result in fire and explosion hazards for [C6mim][NTf2]. Therefore the application of such data in safety purposes should be very careful.  相似文献   

5.
吨量煤体的自燃过程实验模拟研究   总被引:4,自引:0,他引:4  
为更好地弄清矿井实际的煤自然发火规律,利用装煤量达5吨的大型实验台对两种烟煤分别进行了自燃模拟实验。大煤量的实验能够很好地模拟煤矿中煤低温氧化和传热传质共同作用导致的发火过程,实验得到的自然发火期与煤矿实际发火期也是一致的。实验中煤样从缓慢氧化变为快速氧化的临界温度为100~110℃。当煤温低于,临界温度时,煤样的升温受到空气流带走热量和向外界散热的影响很大,因此夹层水的保温作用就很关键。当煤温超过临界温度后,反应加快,温度急剧上升,散热的影响明显降低,反应主要受限于氧气的供应情况。  相似文献   

6.
Ionic liquid (IL) mixtures are promising because they can optimize the involved properties according to industrial needs. It has already been demonstrated that IL flammability is due mainly to IL decomposition generating flammable substances. Four different ILs, 1-Butylimidazolium tetrafluoroborate ([BIM][BF4]), 1-butylimidazolium nitrate ([BIM][NO3]), 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM][BF4]), and 1-butyl-3-methylimidazolium nitrate ([BMIM][NO3]), were selected as the parent salts to form the different imidazolium-based IL binary mixtures. These mixtures were tested via isothermal thermogravimetric analyzer (TGA) at different temperatures (120, 150, 180, 210, and 240 °C), then tested by the flash point analyzer after isothermal heating pretreatment at the above temperatures. Results show that the mixtures' flash point values decrease with the heating temperature increase. Vaporization of the IL mixtures’ decomposition products results in a higher concentration of flammable gases and a flash point decrease, which lead to the flammability hazard increasing. Moreover, results show that the flash points of the studied binary imidazolium IL mixtures are more similar to those of the more unstable IL in their parent ILs. Also, the flammability hazard of IL binary mixtures may obviously increase under the high temperature environment for a long time.  相似文献   

7.
1-Butyl-2,3-dimethylimidazolium nitrate ([Bmmim][NO3]), a kind of versatile and novel ionic liquids, is widely applied in the modern petrochemical industry. Nevertheless, its thermal hazard safety data at high temperature or thermal disturbance conditions are currently unavailable. Therefore, this study aimed to characterize the thermal risk of [Bmmim][NO3] through auto-ignition temperature measurements, flash point analysis, thermal gravimetric analysis/differential scanning calorimetry (TGA/DSC), TGA-Fourier transform infrared spectroscopy (TGA-FTIR) and thermal decomposition kinetics analysis. Additionally, [Bmmim][NO3] was examined using isothermal thermogravimetric analysis at different temperatures (220, 230, 240, 250, 260 and 270 °C). The experimental results show that the flash point of [Bmmim][NO3] is 305.70 ± 9.30 °C and the auto-ignition temperature is 341.00 ± 21.60 °C with an ignition delay time of 8.6 s. In addition, using the nitrogen atmosphere TGA data to calculate the activation energy according to the Friedman, Kissinger and Flynn-Wall-Ozawa methods, roughly the same results were obtained. Finally, TGA-FTIR results show that [Bmmim][NO3] produced acetylene, butane, butanol and carbon dioxide during the thermal decomposition process. This study could provide data support and some guidance for the thermal hazard assessment and safety control of [Bmmim][NO3] during its use and storage.  相似文献   

8.
Serious mine fire disasters have occurred in Northwest China where there are abundant coal resources. For the shortage of water and loess, a large cost of conventional grouting slurry is needed. However, plenty of sand and fly ash resources have been found there. In order to improve the quality of sand injection and reduce the wastage of water during grouting, a kind of new compound material of sand-suspended colloid, which is composed of mineral inorganic gel and organic polymer, was developed in this paper. And the inhibition performance experiments of the sand-suspended colloid were carried out. The results show that the sand-suspended colloid efficaciously affected the oxidation characteristics above the critical temperature during the acceleration oxidation of the lignite and fat-gas coal samples and restrained the oxidation course by increasing the activation energy, so that it reduced the contents of CO and C2H4 and depressed the oxidation rate during the coal spontaneous combustion, and finally inhibited the coal spontaneous combustion.  相似文献   

9.
煤吸附流态氧特性的测定及其自燃原因分析   总被引:2,自引:0,他引:2  
用ZRJ-1型煤自燃测定仪对实验煤样的吸氧量作以测定,并按相关规程划分煤的自燃倾向性等级;同时纵向比较平顶山煤业集团公司十矿戊9-10煤层煤样的吸氧量,横向比较不同矿区煤层煤样的吸氧量,然后分析其吸氧量之间差异.考虑到煤自燃是一个极其复杂的物理、化学过程,因此在评价煤的自燃倾向性等级后,再结合所选煤样分析其自燃的原因.分析表明:无烟煤的吸氧量大于烟煤的吸氧量;煤吸附流态氧的量与挥发分有关,无烟煤中活性物质的存在对煤的自燃性有很大影响.  相似文献   

10.
With the continuous development of battery technology, there are new research investments in materials of various parts. In the field of electrolytes, ionic liquids (IL) are considered to be excellent electrolytes and have been widely studied in distinct energy fields. However, it is necessary to pay attention to the safety characteristics of ionic liquids at high temperature due to the application of energy, but there is little research on the reaction and kinetics of ionic liquids. To ensure the safety of ionic liquids, such as high temperature, the common ionic liquid 1-Ethyl-3-methylimidazolium nitrate ([Emim] NO3) was selected for analysis. The exothermic mode is obtained from the data of differential scanning calorimetry. The basic reaction parameters of [Emim] NO3 were determined with thermodynamic equation simulation. For ionic liquids in the actual situation, consider adding a heat balance model to estimate its temperature change pattern and find out the hazard temperature and related safety parameters. Temperature changes were estimated by constructing 25.0 g and 50.0 g packages to simulate material reactions and heat transfer in the external environment. The results showed that [Emim] NO3 had shorter TMRad and TCL (<1 day) when the temperature was above 180 °C.  相似文献   

11.
为研究不同自燃倾向性煤的自燃指标气体变化规律,提高对煤早期自燃预测预报的准确度,采用程序升温实验系统,得到内蒙古褐煤、神东长焰煤、河南气煤及枣庄焦煤4种不同变质程度煤的氧化时间随温度的变化关系,以及指标气体浓度在煤氧化过程中的变化规律。结果表明:自燃倾向性最高的褐煤应以CO和乙烯作为煤自燃早期预报的首选指标气体;易自燃的长焰煤应采用乙烯和烯烷比为主、以CO为辅的煤自燃判定指标;自燃倾向性较低的气煤应以乙烯和烯烷比作为煤自燃预报指标;CO是自燃倾向性最低的焦煤的最佳自燃预报指标气体。  相似文献   

12.
为探究易自燃煤在常温条件下的氧化特性,自行设计煤常温封闭氧化实验装置,采用实验研究与回归分析2种方法,分析易自燃煤发生氧化反应的气体变化过程,探究3种粒径煤样在20 ℃有限空间内的耗氧与产气特征。结果表明:易自燃煤样在16 d常温封闭氧化过程中,容器内O2体积浓度呈指数衰减、CO和CO2体积浓度呈指数增长的变化规律;在0.06~0.83 mm范围内,粒径越大,易自燃煤耗氧速率越大,CO和CO2产生速率则先增大后减小;介于中间的粒径为0.13~0.25 mm易自燃煤氧化反应最强烈,更容易发生氧化。研究结果对揭示生产环境温度下煤粒粒径对煤自燃的影响有一定的意义。  相似文献   

13.
Coal spontaneous combustion is one of the major natural disasters faced in coal mines. The accurate prediction of the thermal risk of coal is of great importance. However, there isn't a widely accepted approach to get the oxidation process of coal that under adiabatic condition or in a specific environment under mine at present. To demonstrate whether the advanced kinetics simulation method could be employed to obtain the accurate oxidation process of coal for determining the coal's thermal risk in the mine design phase and mining phase, DSC experiments were conducted by C80 micro-calorimeter to get the heat behavior of coal, based on which the kinetic parameters can be solved and the oxidation process of coal can be predicted.The results showed that the kinetics based simulation method was successfully used to predict the adiabatic temperature rise process of coal for risk prediction. The deviation between the predicted curve and tested curve that obtained by adiabatic test is small enough to be accepted. Kinetics based simulation method is a promising candidate, instead of adiabatic test, to assess the propensity of coal to spontaneous combustion, which can play an important role in the design phase of the mine and mining area. Moreover, through establishing the heat balance equation of residual coal and with the aid of kinetics based simulation method, the oxidation process of coal that in the suffocation zone of the gob was also accurately predicted. According to the index t70 (the time required for coal to reach 70 °C) and vmin (the lower limit of the advancing speed of the working face) obtained from the predicted curve, the thermal risk of coal was predicted to guide the further adjustment of the advancing speed of the working face, the amount of the injected mud and the determination that whether to add other fire prevention measures. Kinetics based simulation method, be of great practical importance in risk prediction of coal that in the gob, can be also used as a convenient tool to guide the safe production in the actual mining process.  相似文献   

14.
为揭示不同初始氧化温度下浸水长焰煤的氧化自燃特性,利用红外光谱和热分析实验手段以及MS数值模拟方法研究其氧化自燃规律,并采用线性拟合的方法阐述自由基变化特性。结合分子键能的变化,分析浸水条件下二次氧化的煤氧链式反应过程。研究结果表明:经过120 ℃预氧化后,浸水风干长焰煤的还原性官能团甲基、亚甲基、羟基均高于原煤,而羰基、羧基低于原煤;与原煤相比,浸水风干后的煤预氧化温度在120 ℃时最大升温速率最高(0.036 9 ℃/s),表现出更强的自燃倾向性;MS模拟优化得出煤中各官能团在预氧化120 ℃时键能变化较大,结合热分析实验,确立预氧化后浸水风干煤体氧化自燃特性机制。  相似文献   

15.
煤炭自燃指标性气体确定的实验研究   总被引:3,自引:0,他引:3  
矿井火灾是矿井五大灾害之一,煤炭自燃则是矿井火灾最主要的起因。为了了解煤炭氧化、自燃规律,本文采用TG-DSC技术研究了不同煤种在水分蒸发、吸氧增重、受热分解及燃烧等不同氧化阶段的氧化特征值;并采用TG-DSC-GC联用技术研究了不同煤种在整个氧化阶段的气体产物生成规律及其特征。在煤的低温氧化阶段,找出了CO等可作为判别煤自燃的指标性气体及C2H4等辅助指标性气体;并得出了各煤种氧化阶段的耗氧规律。  相似文献   

16.
为准确预测高瓦斯采空区煤自燃的状况,通过分析发现高抽巷是监测采空区遗煤自然发火的最有效地点。推算出采空区气体在高抽巷中所占的体积分数,进而确定采空区遗煤不同的燃烧阶段所对应的CO体积分数和CO指数。结果表明:当高抽巷中的CO体积分数Chdr CO<30×10-6或CO指数ICO<0.5%时,采空区的遗煤处于低温氧化阶段;当高抽巷中的CO体积分数Chdr CO≥30×10-6或CO指数ICO≥0.5%时,采空区遗煤进入自然发火危险阶段,此时必须采取措施控制采空区自燃氧化的进一步发展。对80501工作面的采空区煤自燃成功地进行预测预报,实现了安全生产。  相似文献   

17.
基于物元模型的煤自燃危险性分析   总被引:4,自引:2,他引:2  
为探索判断煤自燃的危险性新方法,在煤低温氧化试验的基础上,基于可拓理论构建了煤自燃危险性熵权和经验权的物元综合分析模型。采用该方法对4个不同煤样低温氧化试验数据进行自燃危险性分析,得出各煤样自燃危险性的等级及差异程度,并提出相应的防范对策。结果表明:4号煤样比其他煤样更具自燃危险性,需要重点防范。该方法的预测结果与实际情况相吻合。  相似文献   

18.
以活化能的观点研究煤炭自燃机理   总被引:7,自引:5,他引:7  
笔者对煤体的性质和结构进行了分析 ,简要地介绍了关于煤炭自燃机理的各种学说。目前有许多学者用不同的方法来研究煤炭的自燃机理 ,笔者从煤活化能的角度来研究煤炭的自燃。由氧化反应方程提出了活化能 ,根据活化分子运动理论解释了活化能的基本概念 ;并建立了相应的煤氧化反应的活化能方程 ,该方程直线部分的斜率 (E/R)可求出氧化反应的活化能。在煤炭自燃进程中 ,随着煤体温度的升高 ,活化能降低 ,氧化反应加速 ,大量的热量产生 ,如此循环 ,最终导致了煤的燃烧。  相似文献   

19.
为揭示CO在烟煤中的微观吸附和扩散机理,利用Wiser烟煤分子模型,通过巨正则蒙特卡洛(GCMC)和分子动力学方法,研究5种不同温度(293.15,303.15,313.15,323.15,333.15 K)下,压力为0.1~3.0 MPa时CO吸附量、吸附热的变化,采用能量分布分析CO在烟煤中的吸附行为,利用扩散系数和扩散活化能研究CO在烟煤中的扩散特性。研究结果表明:CO在烟煤分子中的模拟结果符合朗格缪尔(Langmuir)吸附规律,随着温度的升高,Langmuir参数a和b减小,CO在烟煤分子中饱和吸附量和吸附能力降低。温度越高,烟煤分子的等量吸附热越低,烟煤分子吸附CO分子的平均等量吸附热为21.20~23.11 kJ/mol,小于42 kJ/mol,属于物理吸附;随着压力的升高,CO分子由能量较高的优势吸附位点逐渐向相对较弱的吸附位点移动;在模拟的温度和压力条件下,CO在烟煤分子模型中的扩散系数随温度和压力的升高而增加,扩散活化能随压力的升高而减小。研究结果为揭示CO在烟煤分子中微观吸附与扩散规律,准确预测采空区封闭火区煤自燃情况具有重要意义。  相似文献   

20.
Spontaneous combustion is a major natural disaster in coal production. In the process of exploring coal self-ignition, a series of hypotheses have been put forward, most scholars agree that the current coal-oxygen compound theory. Oxygen consumption rate reflects the status of coal spontaneous combustion, and it is also one of the parameters necessary for numerical simulation of coal spontaneous combustion. In this paper, a coal heating and oxidation experiment was designed, Experimental device consists of heating and oxidation furnace, gas chromatograph, temperature control and data acquisition systems and other equipment components. Three coal samples whose weight each is 5 g were selected for the study. By experiment, oxygen concentration at the inlet and outlet of temperature oxidation furnace was measured. Oxygen consumption rate is calculated in the heating process of coal according to air flow. In the Cartesian coordinate system, the temperature as abscissa and the oxygen consumption rate for the longitudinal coordinates, drawing the relationship between oxygen consumption rate and temperature plot. And then regression analysis was used to analyze the relationship between oxygen consumption rate and coal temperature during the heating and oxidation process of coal. The results show that the oxygen consumption rate and temperature of coal were linear relationships both before and after the critical temperature when the coal temperature is less than 180 °C. Before the critical temperature oxygen consumption rate is low, however it increases rapidly when coal temperature reaches a critical temperature. The result is important for the prevention and treatment of spontaneous combustion of coal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号