首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Objective: Focusing on children (0–17?years), this study aimed to investigate injury and accident characteristics for bicyclists and to evaluate the use and protective effect of bicycle helmets.

Method: This nationwide Swedish study included children who had visited an emergency care center due to injuries from a bicycle crash. In order to investigate the causes of bicycle crashes, data from 2014 to 2016 were analyzed thoroughly (n?=?7967). The causes of the crashes were analyzed and categorized, focusing on 3 subgroups: children 0–6, 7–12, and 13–17?years of age. To assess helmet effectiveness, the induced exposure approach was applied using data from 2006 to 2016 (n?=?24,623). In order to control for crash severity, only bicyclists who had sustained at least one Abbreviated Injury Scale (AIS) 2+ injury (moderate injury or more severe) in body regions other than the head were included.

Results: In 82% of the cases the children were injured in a single-bicycle crash, and the proportion decreased with age (0–6: 91%, 7–12: 84%, 13–17: 77%). Of AIS 2+ injuries, 8% were head injuries and 85% were injuries to the extremities (73% upper extremities and 13% lower extremities). Helmet use was relatively high up to the age of 10 (90%), after which it dropped. Helmets were much less frequently used by teenagers (14%), especially girls. Consistently, the share of head injuries increased as the children got older. Bicycle helmets were found to reduce all head injuries by 61% (95% confidence interval [CI], 10: +/? 10%) and AIS 2+ head injuries by 68% (95% CI, 12: +/? 12%). The effectiveness in reducing face injuries was lower (45% CI +/? 10% for all injuries and 54% CI +/? 32% for AIS2+ injuries).

Conclusions: This study indicated that bicycle helmets effectively reduce injuries to the head and face. The results thus point to the need for actions aimed at increasing helmet use, especially among teenagers. Protective measures are necessary to further reduce injuries, especially to the upper extremities.  相似文献   

2.
3.
Objective: The objectives of the present article were to (a) describe the main characteristics of bicycle crashes with regard to the road environment, crash opponent, cyclist, and crash dynamics; (b) compare individuals who describe their health after the crash as declined with those who describe their health as not affected; and (c) compare the number of injured cyclists who describe their health as declined after the crash with the predicted number of permanent medical impairments within the same population.

Methods: A sample of individuals with specific injury diagnoses was drawn from the Swedish Traffic Accident Data Acquisition (STRADA) database (n?=?2,678). A survey form was used to collect additional information about the crash and the health-related outcomes. The predicted number of impaired individuals was calculated by accumulating the risk for all individuals to sustain at least a 1% permanent medical impairment, based on the injured body region and injury severity.

Results: Nine hundred forty-seven individuals (36%) responded, of whom 44% reported declined health after the crash. The majority (68%) were injured in single bicycle crashes, 17% in collisions with motor vehicles, and 11% in collisions with another cyclist or pedestrian. Most single bicycle crashes related to loss of control (46%), mainly due to skidding on winter surface conditions (14%), followed by loss of control during braking (6%). There was no significant difference in crash distribution comparing all crashes with crashes among people with declined health. The predicted number of impaired individuals (n?=?427) corresponded well with the number of individuals self-reporting declined health (n?=?421).

Conclusions: The types of crashes leading to health loss do not substantially differ from those that do not result in health loss. Two thirds of injuries leading to health loss occur in single bicycle crashes. In addition to separating cyclists from motorized traffic, other preventive strategies are needed.  相似文献   

4.
Objective: The goal of this study was to evaluate how well an in-laboratory rollover crash test methodology that constrains vehicle motion can reproduce the dynamics of unconstrained full-scale steering-induced rollover crash tests in sand.

Methods: Data from previously-published unconstrained steering-induced rollover crash tests using a full-size pickup and mid-sized sedan were analyzed to determine vehicle-to-ground impact conditions and kinematic response of the vehicles throughout the tests. Then, a pair of replicate vehicles were prepared to match the inertial properties of the steering-induced test vehicles and configured to record dynamic roof structure deformations and kinematic response.

Results: Both vehicles experienced greater increases in roll-axis angular velocities in the unconstrained tests than in the constrained tests; however, the increases that occurred during the trailing side roof interaction were nearly identical between tests for both vehicles. Both vehicles experienced linear accelerations in the constrained tests that were similar to those in the unconstrained tests, but the pickup, in particular, had accelerations that were matched in magnitude, timing, and duration very closely between the two test types. Deformations in the truck test were higher in the constrained than the unconstrained, and deformations in the sedan were greater in the unconstrained than the constrained as a result of constraints of the test fixture, and differences in impact velocity for the trailing side.

Conclusions: The results of the current study suggest that in-laboratory rollover tests can be used to simulate the injury-causing portions of unconstrained rollover crashes. To date, such a demonstration has not yet been published in the open literature. This study did, however, show that road surface can affect vehicle response in a way that may not be able to be mimicked in the laboratory. Lastly, this study showed that configuring the in-laboratory tests to match the leading-side touchdown conditions could result in differences in the trailing side impact conditions.  相似文献   

5.
Objective: Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes.

Methods: We identified crash-involved vehicles, model year 2004–2013, in NASS-CDS (2003–2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater.

Results: We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1–4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1–4 stars).

Conclusions: Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.  相似文献   

6.
IntroductionCycling injury and fatality rates are on the rise, yet there exists no comprehensive database for bicycle crash injury data.MethodWidely used for safety analysis, police crash report datasets are automobile-oriented and widely known to under-report bicycle crashes. This research is one attempt to address gaps in bicycle data in sources like police crash reports. A survey was developed and deployed to enhance the quality and quantity of available bicycle safety data in Virginia. The survey captures bicyclist attitudes and perceptions of safety as well as bicycle crash histories of respondents.ResultsThe results of this survey most notably show very high levels of under-reporting of bicycle crashes, with only 12% of the crashes recorded in this survey reported to police. Additionally, the results of this work show that lack of knowledge concerning bicycle laws is associated with lower levels of cycling confidence. Count model results predict that bicyclists who stop completely at traffic signals are 40% less likely to be involved in crashes compared to counterparts who sometimes stop at signals. In this dataset, suburban and urban roads with designated bike lanes had more favorable injury severity profiles, with lower percentages of severe and minor injury crashes compared to similar roads with a shared bike/automobile lane or no designated bike infrastructure.  相似文献   

7.
8.
Objective: Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes.

Methods: Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver.

Results: Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers traveling through the intersection without yielding (79.0%). After accounting for uncertainty in the timing of braking and steering data, the median evasive braking time was found to be between 0.5 to 1.5 s prior to impact, and the median initial evasive steering time was found to occur between 0.5 and 0.9 s prior to impact. The median average evasive braking deceleration for all cases was found to be 0.58 g. The median of the maximum evasive vehicle yaw rates was found to be 8.2° per second. Evasive steering direction was found to be most frequently in the direction of travel of the approaching vehicle.

Conclusions: The majority of drivers involved in intersection crashes were alert enough to perform an evasive action. Most drivers used a combination of steering and braking to avoid a crash. The average driver attempted to steer and brake at approximately the same time prior to the crash.  相似文献   

9.
Objective: This study aimed to explore the relationship between crash types and different freeway segments and identify the factors contributing to crashes on different freeway segments. Unlike most of the previous studies on freeway segments, this study separately investigates basic freeway segments, single ramp influence segments, and multiple ramp influence segments.

Methods: Nonlinear canonical correlation analysis (NLCCA) and proportionality test were used to identify the relationship between crash types and different freeway segments. The data sets for the different freeway segments accumulated for this study consist of 9,867 crash samples with complete information on all 22 chosen variables. A multinomial logit model (MNL) was used to estimate the influence of crash factors on different freeway segments.

Results: The results show that weaving and diverge overlap influence segments (WD) are more likely to have injury or fatal crashes; diverge and diverge overlap influence segments (DD) are more likely to have property damage–only (PDO) crashes; merge and merge overlap influence segments (MM) are more likely to have sideswipe crashes; and WD have non-sideswipe crashes; WD and weaving overlap influence segments (MW) are more likely to have rear end crashes; and MM segments are less likely to have hit object crashes. The contributing factors are identified by MNL and the results show that different traffic variables, environmental variables, vehicle variables, driver variables, and geometric variables significantly affected the likelihood of crashes on different freeway segments.

Conclusions: Investigation of crash types and factors contributing to crashes on different freeway segments is based on multiple ramp influence segments, which can promote a better understanding of the safety performance of various freeway segments.  相似文献   


10.
Objective: This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes.

Method: Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing “replay” of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking.

Results: It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn–opposite crashes.

Conclusions: These results indicate that connected vehicle technology can be greatly beneficial in real-world crash scenarios and that this benefit would be maximized by having the vehicle intervene autonomously with heavy braking. The crash types that proved difficult for the connected vehicle technology could be better addressed if controller area network (CAN) information is available, such as steering wheel angle, so that driver intent can be inferred sooner. More accurate positioning in the real world (e.g., combining satellite positioning and accelerometer data) would allow the technology to be more effective for near-collinear head-on and rear-end crashes, because the low approach angles that are common in such crashes are currently ignored in order to minimize false alarms due to positioning uncertainty.  相似文献   

11.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

12.
Objectives: An airbag system for motorcycle applications was developed and marketed in 2006 followed by many research projects on the system. In the airbag system, the bag should be supported during the kinetic energy–absorbing period of a rider in a collision. The previously developed system employed a configuration in which motorcycle structures support the airbag, such as a gauge unit and/or a steering structure. The supporting structure functions to receive the reaction force to hold the airbag during a crash to properly absorb the rider's kinetic energy. However, the previous system requires a larger area for this reaction structure and is applicable only to the motorcycles that can provide that area. To overcome this limitation, we propose an airbag system employing another concept. In this concept, the airbag does not use its vehicle structures as a reaction structure but uses the structures of an opposing vehicle, such as doors and/or pillars of an opposing vehicle. In this project, we aim to verify the effectiveness of the proposed system when installed in a motorcycle that cannot provide a larger area for the reaction structure.

Methods: In the system with this concept, it is assumed that the occupant protection performance is largely affected depending on impact configurations. Accordingly, full-scale motorcycle-to-car crash tests using 125 cm3 scooter-type models with and without the proposed system were conducted in various impact configurations. The 7 impact configurations specified in ISO 13232 were selected as the test configurations. Injury variables and injury indices of head, neck, chest, and abdomen were evaluated with the motorcyclist dummy.

Results: Injury variables and indices obtained from the crash tests with the airbag were compared to those of the baseline tests. In 2 impact configurations, the airbags were supported by the side structures of the opposing vehicle and performed to reduce the injury variable of head and/or chest compared to that of the baseline test.

Conclusion: Through the crash tests, beneficial protection effects of the airbag system were confirmed in particular impact configurations. No significant risk for the occupant due to the airbag was observed in the conducted crash tests. It was concluded that the proposed airbag system has feasibility to reduce rider injury in a collision of a motorcycle without sufficient reaction structure.  相似文献   

13.
Objective: The objective of this study was to identify and quantify the motorcycle crash population that would be potential beneficiaries of 3 crash avoidance technologies recently available on passenger vehicles.

Methods: Two-vehicle crashes between a motorcycle and a passenger vehicle that occurred in the United States during 2011–2015 were classified by type, with consideration of the functionality of 3 classes of passenger vehicle crash avoidance technologies: frontal crash prevention, lane maintenance, and blind spot detection. Results were expressed as the percentage of crashes potentially preventable by each type of technology, based on all known types of 2-vehicle crashes and based on all crashes involving motorcycles.

Results: Frontal crash prevention had the largest potential to prevent 2-vehicle motorcycle crashes with passenger vehicles. The 3 technologies in sum had the potential to prevent 10% of fatal 2-vehicle crashes and 23% of police-reported crashes. However, because 2-vehicle crashes with a passenger vehicle represent fewer than half of all motorcycle crashes, these technologies represent a potential to avoid 4% of all fatal motorcycle crashes and 10% of all police-reported motorcycle crashes.

Discussion: Refining the ability of passenger vehicle crash avoidance systems to detect motorcycles represents an opportunity to improve motorcycle safety. Expanding the capabilities of these technologies represents an even greater opportunity. However, even fully realizing these opportunities can affect only a minority of motorcycle crashes and does not change the need for other motorcycle safety countermeasures such as helmets, universal helmet laws, and antilock braking systems.  相似文献   


14.
Objective: Motorcycle crashes are a significant road safety challenge, particularly in many low- and middle-income countries where motorcycles represent the vast majority of their vehicle fleet. Though risky riding behaviors, such as speeding and riding under the influence of alcohol, have been identified as important contributors to motorcycle crashes, little is understood about the effect of using a mobile phone while riding on motorcycle crash involvement. This article investigates crash involvement among motorcycle riders with risky riding behaviors, particularly using a mobile phone while riding.

Methods: Data were obtained from an online survey of university students’ risky riding behaviors in Vietnam administered between March and May 2016 (n?=?665).

Results: Results show that 40% of motorcycle riders reported to have experienced a crash/fall and nearly 24% of motorcycle riders indicated that they had been injured in a crash/fall. Effects of mobile phone use while riding on safety of motorcycle riders are highlighted. Specifically, more frequent use of a mobile phone for texting or searching for information while riding is associated with a higher chance of being involved in a crash/fall. The results also show that drink riding is associated with a higher chance of being injured.

Conclusions: Overall this article reveals significant safety issues of using a mobile phone while riding a motorcycle, providing valuable insight for designing education and publicity campaigns.  相似文献   

15.
Objectives: We combine data on roads and crash characteristics to identify patterns in road traffic crashes with regard to road characteristics. We illustrate how combined analysis of data regarding road maintenance, maintenance costs, road characteristics, crash characteristics, and geographical location can enrich road maintenance prioritization from a traffic safety perspective.

Methods: The study is based on traffic crash data merged with road maintenance data and annual average daily traffic (AADT) collected in Denmark. We analyzed 3,964 crashes that occurred from 2010 to 2015. A latent class clustering (LCC) technique was used to identify crash clusters with different road and crash characteristics. The distribution of crash severity and estimated road maintenance costs for each cluster was found and cluster differences were compared using the chi-square test. Finally, a map matching procedure was used to identify the geographical distribution of the crashes in each cluster.

Results: Results showed that based on road maintenance levels there was no difference in the distribution of crash severity. The LCC technique revealed 11 crash clusters. Five clusters were characterized by crashes on roads with a poor maintenance level (levels 4 and 3). Only a few of these crashes included a vulnerable road user (VRU) but many occurred on roads without barriers. Four clusters included a large share of crashes on acceptably maintained roads (level 2). For these clusters only small variations in road characteristics were found, whereas the differences in crash characteristics were more dominant. The last 2 clusters included crashes that mainly occurred on new roads with no need for maintenance (level 1). Injury severity, estimated maintenance costs, and geographical location were found to be differently distributed for most of the clusters.

Conclusions: We find that focusing solely on road maintenance and crash severity does not provide clear guidance of how to prioritize between road maintenance efforts from a traffic safety perspective. However, when combined with geographical location and crash characteristics, a more nuanced picture appears that allows consideration of different target groups and perspectives.  相似文献   


16.
Objective: Young driver studies have applied quasi-induced exposure (QIE) methods to assess relationships between demographic and behavioral factors and at-fault crash involvement, but QIE's primary assumption of representativeness has not yet been validated among young drivers. Determining whether nonresponsible young drivers in clean (i.e., only one driver is responsible) 2-vehicle crashes are reasonably representative of the general young driving population is an important step toward ensuring valid QIE use in young driver studies. We applied previously established validation methods to conduct the first study, to our knowledge, focused on validating the QIE representativeness assumption in a young driver population.

Methods: We utilized New Jersey's state crash and licensing databases (2008–2012) to examine the representativeness assumption among 17- to 20-year-old nonresponsible drivers involved in clean multivehicle crashes. It has been hypothesized that if not-at-fault drivers in clean 2-vehicle crashes are a true representation of the driving population, it would be expected that nonresponsible drivers in clean 3-or-more-vehicle crashes also represent this same driving population (Jiang and Lyles 2010 Jiang XG, Lyles RW. A review of the validity of the underlying assumptions of quasi-induced exposure. Accid Anal Prev. 2010;42:13521358.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). Thus, we compared distributions of age, gender, and vehicle type among (1) nonresponsible young drivers in clean 2-vehicle crashes and (2) the first nonresponsible young driver in clean crashes involving 3 or more vehicles to (3) all other nonresponsible young drivers in clean crashes involving 3 or more vehicles. Distributions were compared using chi-square tests and conditional logistic regression; analyses were conducted for all young drivers and stratified by license status (intermediate vs. fully licensed drivers), crash location, and time of day of the crash.

Results: There were 41,323 nonresponsible drivers in clean 2-vehicle crashes and 6,464 nonresponsible drivers in clean 3-or-more-vehicle crashes. Overall, we found that the distributions of age, gender, and vehicle type were not statistically significantly different between the 3 groups; in each group, approximately one fourth of drivers were represented in each age from age 17 through 20, half were males, and approximately 80% were driving a car/station wagon/minivan. In general, conclusions held when we evaluated the assumption within intermediate and fully licensed young drivers separately and by crash location and time.

Conclusions: It appears that the representativeness assumption holds among the population of young NJ drivers. We encourage young driver studies utilizing QIE methods to conduct internal validation studies to ensure appropriate application of these methods and we propose utilization of QIE methods to address broader foundational and applied questions in young driver safety.  相似文献   

17.
Abstract

Objective: Car drivers tend to underestimate the speed of e-bikes and accept smaller gaps for crossing in front of them compared to conventional bicycles. As an explanation, it has been suggested that car drivers rely on their previous experience with conventional bicycles, which tells them that those mostly travel at low speeds. E-bikes, which look just like regular bicycles, do not conform to this expectation, resulting in potentially dangerous interactions. Based on this assumption, researchers have suggested to increase other road users’ awareness of e-bikes’ higher speeds by giving them a distinct appearance. The goal of our experiment was to investigate the effects of such a unique appearance, aided by clear instructions about the higher speeds of e-bikes, on gap acceptance.

Method: In order to investigate the effect of appearance independent of the effect of bicycle type, we used video sequences of conventional bicycles and e-bikes approaching at different levels of speed. The riders (regardless of what type of bike they were actually riding) either wore an orange helmet as an indicator for an e-bike, or a gray helmet indicating a conventional bicycle. Fifty participants were asked to indicate the smallest acceptable gap for a left turn in front of the cyclist or e-bike rider.

Results: The results showed significantly smaller acceptable gaps when confronted with the gray helmet (signal for bicycle) compared to the orange helmet (signal for e-bike), whereas there was no difference between the actual bicycle types.

Conclusions: Overall, the results indicate that informing about e-bikes characteristics in combination with a unique appearance can lead to a more cautious behavior among car drivers.  相似文献   

18.
Objective: The elevated crash involvement rate of young drivers is well documented. Given the higher crash risk of young drivers and the need for innovative policy and programs, it remains important to fully understand the type of crashes young drivers are involved in, and knowledge of the lifetime care cost of crashes can support effective policy development. The aim of this article is to document the number and type of young driver crashes, as well as the associated lifetime care cost over a 9-year period (2005–2013) in Victoria, Australia.

Methods: In Victoria, Australia, the Transport Accident Commission (TAC) has legislated responsibility for road safety and the care of persons injured in road crashes, irrespective of fault. TAC claims data for the period 2005–2013 were used to document the number and type of young driver crashes. Lifetime care costs (past and future payment liabilities) were calculated by Taylor Fry actuarial consultancy. License and population data were used to define the crash involvement rate of young drivers.

Results: Over the 9-year period, 16,817 claims were lodged to the TAC by drivers 18–25 years of age following a crash. There were 646 fewer drivers aged 18–25 killed and injured in 2013, compared to 2005, representing an unadjusted change of ?28.7% (?29.8% males; ?28.4% females). The total lifetime care cost of young drivers killed and injured in Victoria for the period 2005–2013 was estimated to be AU$634 million (US$493 million). Differences between males and females, single- and multivehicle crashes, and fatalities and injuries were found to be statistically significant. Run-off-road crashes and crashes from opposing direction were overrepresented in the lifetime care costs for young driver claimants. Twenty-eight injured drivers were classified as high-severity claims. These 28 claimants require additional long-term care, which was estimated to be AU$219 million; of these 28, 24 were male (85.7%). The long-term care costs for these 28 drivers (0.16%) accounts for 34.5% of the total lifetime care cost of all 18- to 25-year-old injured drivers.

Conclusions: By using no-fault lifetime care costs that account for medical and like expenses, rehabilitation, and social reintegration costs, a more accurate understanding of the cost of young driver crashes can be determined. Application of these costs to specific crash types highlights new priorities and opportunities for developing programs to reduce young driver crashes.  相似文献   

19.
Objective: Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries.

Methods: A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000–2012.

Results: When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement.

Conclusions: Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash scenarios is decoupled from the regional crash database, the expert assessment may be reutilized, thereby allowing rapid reanalysis when new crash data become available. In addition, the KBMS methodology has potential application to injury forecasting, driver/rider training strategies, and redesign of existing road infrastructure.  相似文献   


20.
Objective: The objective of this study was to estimate the prevalence and odds of fleet driver errors and potentially distracting behaviors just prior to rear-end versus angle crashes.

Methods: Analysis of naturalistic driving videos among fleet services drivers for errors and potentially distracting behaviors occurring in the 6 s before crash impact. Categorical variables were examined using the Pearson's chi-square test, and continuous variables, such as eyes-off-road time, were compared using the Student's t-test. Multivariable logistic regression was used to estimate the odds of a driver error or potentially distracting behavior being present in the seconds before rear-end versus angle crashes.

Results: Of the 229 crashes analyzed, 101 (44%) were rear-end and 128 (56%) were angle crashes. Driver age, gender, and presence of passengers did not differ significantly by crash type. Over 95% of rear-end crashes involved inadequate surveillance compared to only 52% of angle crashes (P < .0001). Almost 65% of rear-end crashes involved a potentially distracting driver behavior, whereas less than 40% of angle crashes involved these behaviors (P < .01). On average, drivers spent 4.4 s with their eyes off the road while operating or manipulating their cell phone. Drivers in rear-end crashes were at 3.06 (95% confidence interval [CI], 1.73–5.44) times adjusted higher odds of being potentially distracted than those in angle crashes.

Conclusions: Fleet driver driving errors and potentially distracting behaviors are frequent. This analysis provides data to inform safe driving interventions for fleet services drivers. Further research is needed in effective interventions to reduce the likelihood of drivers' distracting behaviors and errors that may potentially reducing crashes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号