首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Modification of soil humic matter after 4 years of compost application   总被引:2,自引:0,他引:2  
Two soil plots, 1 ha each, were amended yearly for 4 years, respectively, with 35.8 and 71.6 Mg ha(-1) yr(-1) of mature compost (CM) obtained from food and vegetable residues. The compost, amended soils, and a control soil plot after 4 years (S4), were analyzed for humin (HUC), humic acid (HAC), fulvic acid (FAC), and non-humic carbon (NHC) content. Compared to S4, the amended soil contained more humified C (HAC, FAC and HUC) and less NHC. Further evidence of the effect of compost on soil organic matter was obtained by the analysis of the humic acid (HA) fractions isolated from both the compost and the soils. These were characterized by elemental analyses and Diffuse Reflectance Infrared Fourier Transformed spectroscopy. The HAs isolated from CM and from S4 were significantly different. The HAs isolated from the amended plots were more similar to HA isolated from CM than to HA isolated from S4. The experimental data of this work indicate that the compost application may affect significantly the soil organic matter composition, and that the approach used in this work allows one to trace the fate of compost organic matter in soil.  相似文献   

2.
A laboratory study was conducted to evaluate the effects of composition and concentration of mixed anionic/nonionic surfactants on the efficiency of a micellar-enhanced ultrafiltration (MEUF) operation in removing metal ions/organic solutes from aqueous solutions. Based on the analysis of surface tensions and micelle sizes, it was found that for mixed sodium dodecylsulfate (SDS)/Triton X-100 surfactants, the critical micelle concentration (cmc) was significantly lower than that of SDS and mixed micelles formed. The mixed surfactant system was then applied in a cross-flow mode of MEUF, in which the concentration polarization can be neglected, to remove Cu2+ from aqueous solutions. With a surfactant concentration of 10 mM, the Cu2+ rejection was negligible by using pure Triton X-100 and increased with increasing SDS mole fraction with a value as high as 85%, which suggests that the rejection of Cu2+ was due to the electrostatic attraction between Cu2+ and SDS. Furthermore, pronounced Cu2+ rejection was obtained for a 5 mM SDS solution, which was attributable to a decrease in the cmc of SDS by the existence of Cu2+. When the MEUF technique was applied to remove Cu2+ and phenol simultaneously from aqueous solutions, the Cu2+ rejection was slightly enhanced in the presence of phenol. However, the rejection of phenol was comparatively low, approximately 27%, which may be caused by its relatively hydrophilic characteristic.  相似文献   

3.
陈凯伦  李方敏  黄河 《化工环保》2017,36(5):497-502
采用4种表面活性剂解吸老化石油污染土壤中的污染物,对其解吸动力学特征及残油组分进行了分析。实验结果表明:在表面活性剂质量浓度相同(0.5 g/L)条件下,土壤中石油污染物解吸率的大小顺序为十二烷基硫酸钠(SDS)曲拉通X-100(TX-100)吐温-80(TW-80)十二烷基苯磺酸钠(SDBS);SDS的解吸率最高,经48 h累积解吸后土壤中石油污染物的解吸率为38.7%;表面活性剂对石油污染物的解吸动力学曲线用Elovich方程拟合,效果最好,相关系数为0.970 2~0.995 6;非离子表面活性剂(TX-100、TW-80)对石油污染物中饱和烃组分的解吸率优于阴离子表面活性剂(SDS、SDBS),而对芳香烃组分的解吸率不如阴离子表面活性剂。  相似文献   

4.
Pig manure rice straw compost was extracted using different extraction methods, and the composition of each extraction was identified by chromatogram and spectroscopy in order to investigate plant growth promoting factors. Compared with direct extraction, aerated and non-aerated fermentation extractions were better for nutrient accumulation, especially for high molecular weight substances. Cucumber yields of aerated fermentation extraction of compost (AFEC) treatment were 16.5 and 57.6?% higher than the direct extraction of compost (DEC) and non-aerated fermentation extraction of compost (NAFEC) treatments. Humic acid-like and fulvic acid-like substances were the main components in all extracts. Furthermore, AFEC showed the most humification and aromatization. Humic substances extracted from AFEC (H-AFEC) increased shoot dry weight by 2.8 and 7.4?%, compared to humic substances extracted from DEC (H-DEC) and humic substances extracted from NAFEC (H-NAFEC). In conclusion, AFEC was the best extraction method to get more humic substances to stimulate plant growth.  相似文献   

5.
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a “green” surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured.Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.  相似文献   

6.
Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was measured after incubation in the free FA fraction and a -2.58 Deltadelta15N in the bound FA. These changes, which occurred during soil incubation in the absence of C inputs, indicate that free FA fractions were utilised by soil microorganisms, and bound FA were decomposed and replaced, in part, by newly synthesized FA. The 13CPMAS-TOSS NMR spectra of free HA extracted before and after 215 days of incubation were mostly unchanged. In contrast, changes were evident in bound HA and showed an increase in aromatic C after incubation.  相似文献   

7.
表面活性剂在多环芳烃污染土壤修复中的应用   总被引:4,自引:2,他引:4  
王宏光  郑连伟 《化工环保》2006,26(6):471-474
介绍了单一表面活性剂(非离子表面活性剂、生物表面活性剂)、阴-非离子混合表面活性剂对多环芳烃的增溶作用、增溶机理及无机离子对表面活性剂增溶能力的影响,综述了化学表面活性剂和生物表面活性剂在污染土壤生物修复中的应用。由于生物表面活性剂具有许多独特的优点,今后应加强生物表面活性剂的开发与应用研究。  相似文献   

8.
This work aims to evaluate the effects of compost treatment of digested sewage sludge on nitrogen behavior in two soils, a Spodosol and an Oxisol soil. Digested sewage sludge was composted with sawdust and woodchips, diluting the total nitrogen to one-fourth (dry mass basis) of its original value. Then, sludge and compost were added to the two soils on an equivalent dry weight basis to consider the risk of NO3- -N leaching. Compost treatment of sewage sludge has slowed down the release of mineral-N to half in the Spodosol and to one-third in Oxisol soil. As a result, NO3- -N concentrations in soils incubated with compost were less than half of the amounts found from soils incubated with digested sludge. Estimates were made of the maximum monthly nitrate to leach from the four combinations of soil and sludge treatment. Application of digested sludge, at a higher nitrogen application rate, resulted in a higher nitrate leaching potential than application of the compost product. Soil type also played an important role, with the Oxisol having slightly higher estimated leaching potential than the Spodosol. The higher nitrate release rate in the Oxisol is counterbalanced by its higher field capacity to lessen the expected difference between the two soils.  相似文献   

9.
In this study, we investigated the humification of municipal solid waste incineration residue through identification of extracted humic substances, and examined the leachability of dioxins by batch leaching test. The samples were incineration residues excavated from lysimeters 6-8 years after being filled. The results of investigation of humic substances showed that the top layers from the surface to a depth of 30-70 cm contained more humic substances than the other layers judging from the color of the samples and optical characteristics of the extracts. In particular, humification in the lysimeter filled with a small amount of compost had progressed through all the layers, not only the top one. The tests revealed that the leaching concentrations of dioxins increased with advanced humification and showed relatively good correlation to dissolved organic carbon (DOC) of leachate at each lysimeter. Humification advances from the surface first, and DOC generated from the humification may preferentially carry down the highly chlorinated dioxin compounds such as O8CDD as DOC-dioxin complexes. Comparing the content and leaching concentration according to depth, we observed not only a decrease in dioxin content but also an increase in leaching of the highly chlorinated dioxins at deeper layers in the lysimeters with the compost. This tendency seemed to result from biological activities.  相似文献   

10.
The effects of amendment with municipal solid waste compost (MSWC) and anaerobically digested sewage sludge (SS) on the compositional and structural features of soil humic acids (HAs) were investigated. For this purpose, HAs were isolated from MSWC, SS, and two different Portuguese soils, a sandy Haplic Podzol and a clay loam Calcic Vertisol, which were either unamended or amended with MSWC or SS at a rate of 60tha(-1). The isolated HAs were analyzed for elemental and acidic functional group composition, and by ultraviolet/visible, Fourier transform infrared (FT IR), and fluorescence spectroscopies. The application of MSWC and especially SS to soils determined an increase of C, N, H, and S contents and E(4)/E(6) ratios (i.e., ratios of absorbances at 465 and 665nm), and a decrease of O, COOH, and phenolic OH contents and C/N, C/H, and O/C ratios of soil HAs. The FT IR and fluorescence results showed that the organic amendments, especially SS, caused an increase of the aliphatic character and a decrease of the degrees of aromatic polycondensation, polymerization, and humification of amended soil HAs. Both MSWC and SS affected more markedly the clayey soil HAs than the sandy soil HAs, possibly due to less extended mineralization processes and the protective action of clay minerals on amended soil HAs.  相似文献   

11.
Parameters that affect the degree of humification for humic substances (HSs) are deeply related to the maturity of the compost. In general, the matured composts contain HSs with a higher degree of humification. In addition, microbial activities during composting are also one of the indices for compost maturation. Branched-chain fatty acids are metabolites as the result of microbial activities in a soil environment. Such branched-chain fatty acids, regarded as humic precursors, are incorporated into HSs during the composting process. To determine whether branched-chain fatty acids in HSs can be used as biomarkers during composting processes or not, HSs were extracted from three types of composts with the different maturation, and the branched-chain fatty acids in the HSs were analyzed by pyrolysis–gas chromatography/mass spectrometry with tetramethylammonium hydroxide (TMAH-py–GC/MS). HSs with a higher degree of humification (higher aromaticity and lower molecular weight) contained higher levels of branched-chain fatty acids. These results show that branched-chain fatty acids in HSs from matured compost samples can be used as biomarkers, which indicate the history of microbial activities during overall composting process.  相似文献   

12.
We investigated the effect of a single compost application at two rates (50 and 85Mgha(-1)) on carbon (C) degradation and retention in an agricultural soil cropped with maize after 150d. We used both C mass balance and soil respiration data to trace the fate of compost C. Our results indicated that compost C accumulated in the soil after 150d was 4.24Mgha(-1) and 6.82Mg C ha(-1) for 50 and 85Mg ha(-1) compost rate, respectively. Compost C was sequestered at the rate of 623 and 617g C kg(-1) compost TOC for 50 and 85Mgha(-1) compost dose, respectively. These results point to a linear response between dose of application and both C degradation and retention. The amount of C sequestered was similar to the total recalcitrant C content of compost, which was 586g C kg(-1) compost TOC, indicating that, probably, during the short experiment, the labile C pool of compost (414g C kg(-1) of compost TOC) was completely degraded. Soil respiration measured at different times during the crop growth cycle was stable for soils amended with compost (CO2 flux of 0.96+/-0.11g CO2 m(-2) h(-1) and 1.07+/-0.10g CO2 m(-2) h(-1), respectively, for 50 and 85Mgha(-1)), whereas it increased in the control. The CO2 flux due to compost degradation only, though not statistically significant, was always greatest for the highest compost doses applied (0.22+/-0.40g CO2 m(-2) h(-1) and 0.33+/-0.25g CO2 m(-2) h(-1) for the 50 and 85Mgha(-1) compost dose, respectively). This seems to confirm the highest C degradation for the 85Mgha(-1) compost dose as a consequence of the presence of more labile C. Unlike other studies, the results show a slight increase in the fraction of carbon retained with the increase in compost application rate. This could be due to the highly stable state of the compost prior to application, although it could also be due to sampling uncertainty. Further investigations are needed to better explain how the compost application rate affects carbon sequestration, and how characterization into labile and recalcitrant C can predict the amount of C sequestered in the soil.  相似文献   

13.
The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg?1, and contaminated Cambisol with total Cd 6.16 mg kg?1. Decrease of extractable Cd (0.01 mol l?1 CaCl2) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l?1 CH3COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.  相似文献   

14.
Compost air permeability controls air flow through compost during composting or when using compost as biofilter material. Air permeability is therefore an important characteristic of compost. The relationships between air permeability (k(a)) in compost and compost dry bulk density (rho b), gravimetric water content (omega), and volumetric air content (epsilon) was investigated for two types of composts. The composts used were produced from a digested sewage sludge-straw mixture and from garden waste and measurements were conducted on sieved and repacked 100 cm3 compost samples. Results showed a linear relation between log(k(a)) and rho b at constant values of omega for both composts, indicating an exponential relationship between k(a) and rho b. The slopes of these relationships generally became more negative with increasing rho b. The results further showed a linear relationship between log(k(a)) and log(epsilon) for both composts as also often observed for soils. It was observed that the log(k(a)) and log(epsilon) relationships for the garden waste compost all intercepted at the same location despite having very different slopes. This means that it is possible to predict the entire k(a)-epsilon relationship using only one measurement of corresponding (k(a), epsilon) for garden waste. It was not possible to determine whether this was also the case for the sewage sludge compost due to difficulties in sample preparation at low and high water content.  相似文献   

15.
Compost can provide a rich organic nutrient source and soil conditioner for agricultural and horticultural applications. Ideal compost amendment rates, however, vary based on starting material and compost maturity or their interaction, and there is little consensus on appropriate methods to gauge maturity. In this study, electrical conductivity, carbon-to-nitrogen ratio, and carbon mineralization measurements were made on compost-amended soils and compared to phytotoxicity measured as cress (Lepidium sativum) germination. Cress germination in soil and compost mixtures incubated for 8-10 days significantly decreased with increasing electrical conductivity and carbon mineralization rate of the mixture and with carbon mineralization rate and mineralizable carbon associated with the compost. Cress germination was not related to carbon-to-nitrogen ratio or pH of soil and compost mixtures. The electrical conductivity of the soil and compost mixtures significantly decreased with decreasing mineralizable carbon suggesting that compounds contributing to electrical conductivity were present in the compost and decomposed upon soil amendment. The results of this study indicate that measurements of mineralizable carbon and mineralization rate of composts in soil, and electrical conductivity and mineralization rate of soil and compost mixtures, can be used as indicators of compost maturity.  相似文献   

16.
陈逸斌  吴明红  杨洁  王旌  徐刚  姜勇 《化工环保》2019,39(5):532-537
以一水合柠檬酸(CA)为洗涤剂,分别采用吐温80(TW80)、十二烷基磺酸钠(SDS)、β-环糊精(BCD)和腐植酸(HA)4种表面活性剂与CA联合洗涤高黏性土壤中的重金属,考察表面活性剂与CA的联合洗脱效果。实验结果表明:添加4种表面活性剂均可提高CA对Cu、Zn和Pb的去除率;处理时无需调节体系pH;在表面活性剂与CA的混合液与土壤的液固比为10:1(mL/g)的条件下,采用一次洗涤即可。经4种表面活性剂与CA联合洗涤后,土壤中Cu、Zn和Pb的离子交换态、碳酸盐结合态和铁锰氧化结合态的占比均下降,而硫化物及有机结合态和残渣态的占比有所提升。  相似文献   

17.
Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (clinoptilolite) can enhance its quality and suitability for agricultural use. However, the dewatered anaerobically stabilized primary sewage sludge (DASPSS) contained a low concentration of humic substances (almost 2%), and the addition of the waste paper was necessary in order to produce a good soil conditioner with high concentrations of humics. The final results showed that the compost produced from DASPSS and 40-50% w/w of waste paper was a good soil fertilizer. Finally, in order to estimate the metal leachability of the final compost product, the generalized acid neutralization Capacity (GANC) procedure was used, and it was found that by increasing the leachate pH, the heavy metal concentration decreased. The application of the sequential chemical extraction indicated that metals were bound to the residual fraction characterized as a stabilize fractions.  相似文献   

18.
In this work the composting process of municipal solid wastes was studied in order to characterize the transformations of organic matter, particularly humic acid (HA). A composting process, lasting three months, was monitored by chemical methods; the following parameters were measured: water-soluble carbon concentration (WSC) and humic substances content (humic and fulvic acid (FA)). The effects of humification on the molecular structure of humic acid (HA) were also evaluated by Fourier transform infrared (FT-IR) and (13)C NMR spectroscopy. WSC concentration rapidly increased reaching a maximum at day-14 of the composting process and then declined. The humic and fulvic acid content (HA and FA, respectively) slightly increased during the process. The FT-IR and (13)C NMR spectra of HA indicate a high rate of change in structure during composting. The groups containing aromatic and carboxylic C increased, while polysaccharides and other aliphatic structures degraded during composting, resulting in HA structures of higher aromaticity. Therefore, spectrometric measurements could provide information significantly correlated to conventional chemical parameters of compost maturity.  相似文献   

19.
Compost application to turfgrass soils may increase dissolved organic C (DOC) levels which affects nutrient dynamics in soil. The objectives of this study were to investigate the influence of compost source and application rate on soil organic C (SOC), DOC, NO(3), and available P during 29 months after a one-time application to St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] turf. Compost sources had variable composition, yet resulted in few differences in SOC, DOC, and NO(3) after applied to soil. Available NO(3) rapidly decreased after compost application and was unaffected by compost source and application rate. Available P increased after compost application and exhibited cyclical seasonal patterns related to DOC. Compost application decreased soil pH relative to unamended soil, but pH increased during the course of the study due to irrigation with sodic water. Increasing the compost application rate increased SOC by 3 months, and levels remained fairly stable to 29 months. In contrast, DOC continued to increase from 3 to 29 months after application, suggesting that compost mineralization and growth of St. Augustinegrass contributed to seasonal dynamics. Dissolved organic C was 75%, 78%, and 101% greater 29 months after application of 0, 80, and 160 Mg compostha(-1), respectively, than before application. Impacts of composts on soil properties indicated that most significant effects occurred within a few months of application. Seasonal variability of SOC, DOC, and available P was likely related to St. Augustinegrass growth stages as well as precipitation, as declines occurred after precipitation events.  相似文献   

20.
Sulphur mineralization of cattle manure (CM) and green waste compost (GWC) added to six agricultural soils with different chemical properties was monitored over 10 weeks in a laboratory incubation experiment. Although the amount of sulphur was higher in CM than in GWC, the cumulative SO4(2-)-S values in GWC-treated soils were higher than in soil amended with CM. The percentages of mineralized S were always higher in GWC-treated soil (in the range 1.3-8.5%) than in CM-treated soil (in the range 0.9-3.8%). In three of the six soils, particularly for CM, an immobilization of sulphur was observed. Three kinetic models were evaluated for their suitability to describe the mineralization process. The first-order model best described S mineralization for both amended and control soils. The GWC substantially increased the amount of potentially mineralizable S (S0) relative to the controls. In GWC-treated soils, the rates of S mineralization (k) were higher than rates in the controls. The k of CM-amended soils was often lower than the k of control soils. Parameters derived from the model were tested as indices for assessing the relationships between S mineralization and soil characteristics. The S0 was positively correlated to the amount of cumulative SO4(2-)-S and also to the content of organic C, N and S in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号