首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
研究农田土壤微生物多样性、结构与功能的海拔分布特征及其影响因子,对保护农田生态系统生物多样性具有重要意义.利用高通量测序技术对宁夏黄土丘陵区农田土壤细菌多样性、群落结构和代谢功能沿海拔分布特征及其对土壤理化性质的响应进行分析.结果表明:①土壤细菌Alpha多样性指数与海拔呈显著负相关,沿海拔呈现先降低再略升高的变化趋势.②变形菌(Proteobacteria)、放线菌(Actinobacteria)和酸杆菌(Acidobacteria)等7个菌门为优势菌群,其中5个菌群在海拔间具有极显著性差异.③二级分类水平上包括膜运输、碳水化合物代谢和氨基酸代谢等36个细菌代谢功能,其中22个在不同海拔间具有显著性差异,12个具有极显著性差异.④Pearson相关分析表明,土壤含水量、容重、pH和碳氮比对细菌Alpha多样性影响最为显著,总有机碳、全氮和全磷等土壤养分对细菌Beta多样性具有显著影响.⑤Mantel分析表明,门水平细菌群落结构受土壤含水量、总有机碳和碳氮比影响,细菌代谢功能与土壤pH、总有机碳、全氮、全磷和碳氮比均有显著相关性.方差分解分析显示土壤含水量对群落结构解释度最高,pH对代谢功能解释度最高.由此可知,土壤含水量和pH是影响宁夏黄土丘陵区农田土壤细菌多样性、群落组成和代谢功能的主要土壤因子.  相似文献   

2.
了解长江黑沙洲湿地生态系统下不同土地利用方式对大型土壤动物群落的影响,于2013年12月,对长江黑沙洲湿地生境下天然洲麦地(W1)、林地(F1)、棉花地(C1)、芦苇地(R)和黑沙洲麦地(W2)、林地( F2)、棉花地( C2)进行野外调查,共捕获土壤动物602只.统计分析表明,不同土地利用方式下,土壤动物的个体数和类群数均存在着极显著的差异(P<0.01),垂直分布表现出较为明显的表聚性,多样性指数H′和丰富度指数D差异较为显著,土壤动物群落相似性指数均较低.因此,不同土地利用方式对黑沙洲湿地大型土壤动物群落组成与结构特征有一定的影响.  相似文献   

3.
海河流域河流生态系统健康评价   总被引:23,自引:5,他引:18  
郝利霞  孙然好  陈利顶 《环境科学》2014,35(10):3692-3701
随着经济发展,人类活动对河流生态系统的胁迫日益强烈,生态系统健康状况受到严重威胁.本研究以海河流域2010年73个采样点的水质、营养盐和底栖动物指标为例,采用指标体系法,从化学完整性和生物完整性两方面评价了流域内河流生态系统健康.结果表明,海河流域河流生态系统健康状况整体较差,有72.6%的样点处于"极差"健康状态,同时表现出明显的地区集聚效应;河流水质与人类活动强度密切相关;海河流域水体富营养化趋势明显;流域内底栖动物多样性低,清洁物种较少.氨氮、总氮、总磷等营养盐指标是影响河流生态系统健康的关键因子,应从控制上述指标入手,遏制海河流域河流生态系统健康恶化.对于河流生态系统健康评价,多因子的综合评价法优于单因子评价法.  相似文献   

4.
以淇河流域为研究对象,利用2000~2015年土地利用/覆被数据,结合当量因子法修正中国陆地不同生态系统服务价值当量表,采用双变量相关分析法和生态系统服务权衡模型分析生态系统服务权衡协同关系,引入人类活动强度指数评估模型分析人类活动影响空间特征,运用空间自相关探讨人类活动影响与生态系统服务价值的空间关联性及LISA聚类分析.结果表明:(1)2000~2015年淇河流域生态系统服务价值呈下降趋势,2010年生态系统服务最低(19.29亿元),废物处理平均价值最大(3.68亿元),娱乐文化平均价值最小(0.81亿元);(2)从生态系统权衡协同关系来看,两种相关性分析均表明研究区生态系统服务以协同关系为主,由线性关系发现供给服务、调节服务与支持服务呈现为互为增益的协同关系,文化服务与支持服务、供给服务、调节服务分别表现为此消彼长的权衡关系,生态系统服务权衡协同度表明土壤保持和原材料及土壤保持和生物多样性协同度最高(4.4),权衡度最高(-5.2)为水源涵养和原材料、水源涵养和生物多样性;(3)淇河流域人类活动强度空间分异显著,流域下游人类活动影响强度明显高于上游地区,人类活动强度与生态系统服务价值空间相关性由正相关转向负相关.  相似文献   

5.
湘江流域主要支流土壤Cd污染空间分布与相关性   总被引:1,自引:0,他引:1       下载免费PDF全文
针对土壤Cd污染超标问题,开展流域尺度下的土壤Cd空间分布与相关性分析,选定土壤污染热点区域——湘江流域作为研究对象,以流域内主要支流的汇水范围作为分析单元,研究各支流流域土壤w(Cd)的空间分布特征及空间相关性.结果表明:湘江流域上、中、下游各支流流域之间表现出明显的空间差异性,土壤w(Cd)平均值表现为中游支流(0.29 mg/kg)>下游支流(0.19 mg/kg)>上游支流(0.17 mg/kg);湘江流域的土壤w(Cd)分布与相关污染企业位置相关性很高,沩水、浏阳河、渌江、涟水、洣水、蒸水、耒水、舂陵水和灌江流域土壤w(Cd)空间相关性较低(0.626 ≤ R ≤ 0.767),企业位置分布具有明显的聚集性;潇水流域土壤w(Cd)空间相关性(R=0.889)较高,企业分布较为均匀,通过潇水流域的各向异性分析可知,土壤w(Cd)分布与企业分布方向一致.研究显示,湘江流域内土壤w(Cd)分布存在空间差异性,各支流的土壤w(Cd)与相关污染企业的空间分布存在依存关系.   相似文献   

6.
为了摸清水旱轮作农田土壤动物多样性及相关研究,该文通过筛选国内外水旱轮作农田土壤动物相关文献,总结目前水旱轮作农田土壤动物多样性研究现状。水旱轮作农田作为中国农田的重要组成部分,得到了众多关注与研究。而土壤动物作为土壤环境变化的指示生物,在维持土壤生物多样性和监测土壤环境等方面的作用不可忽视,该文分析水旱轮作农田土壤动物多样性影响因子、土壤动物生态功能和土壤健康的关系,以期为水旱轮作农田土壤动物研究提供一定的理论基础。  相似文献   

7.
流域景观格局对土壤保持服务的影响   总被引:2,自引:0,他引:2  
以子流域为空间单元,应用生态系统服务和交易的综合评估模型(InVEST)进行土壤保持服务评估,并借助景观指数计算软件(FRAGSTATS)表征景观格局特征,综合运用空间自相关探讨土壤保持量与景观格局指数的空间关联关系,同时从景观格局角度出发,开展土壤保持量与景观格局指数的空间回归分析.结果表明:2014年土壤保持服务较高的子流域具有景观类型组成相对单一、景观各类型间非均匀分布、存在优势斑块、景观分离度低的格局特征; 2014年甘肃白龙江14个子流域表现出土壤保持服务与景观格局显著的空间相关关系,占子流域总数量的37.84%;模型对比方面,空间滞后模型(SLM)优于非空间线性模型(OLS),表明甘肃白龙江各子流域的土壤保持量在空间上具有实质性的空间依赖.景观类型多样性及其均匀程度是影响甘肃白龙江子流域土壤保持量的重要景观指标.  相似文献   

8.
微生物多样性对土壤碳代谢特征的影响   总被引:3,自引:1,他引:2  
安丽芸  李君剑  严俊霞  李洪建 《环境科学》2017,38(10):4420-4426
土壤微生物群落在生态系统过程中发挥着重要的作用,而关于土壤微生物多样性对生态系统功能的影响无一致结论.为了研究微生物多样性对土壤碳代谢特征的影响,将稀释10~(-1)、10~(-3)和10~(-5)倍(D1、D3和D5)的庞泉沟阔叶混交林土壤悬浮液接种在灭菌的土样中.通过碱式滴定法和Biolog Eco板等实验方法测定了不同多样性梯度下土壤碳矿化速率和碳代谢利用模式的变化.结果表明培养6周后,D1处理的碳矿化速率、累积碳矿化量、平均孔颜色变化率(AWCD)和多样性指数(Shannon、Mc Intosh和丰富度指数)均显著高于D5处理.且相关分析表明,累积碳矿化量和AWCD与丰富度呈显著负相关.对碳源吸光度做主成分分析(PCA)和单因素方差分析发现微生物多样性梯度的土壤碳源利用模式也存在差异.因此,微生物多样性下降影响土壤的碳矿化速率和碳源利用模式,导致陆地生态系统的功能发生改变,在森林土壤管理中,应重视土壤微生物物种多样性变化对生态系统功能的影响.  相似文献   

9.
聚焦于土壤环境中包括微塑料在内的塑料污染,综述了微生物与土壤塑料相互作用的最新研究成果.主要内容包括:(i)土壤塑料的来源、迁移及其在土壤中长期贮存的基本特征;(ii)土壤微生物对塑料的影响;(iii)塑料污染对土壤微生物群落及酶活性、土壤动物、农作物生产以及对全球陆地生态系统功能的影响.最后,本文展望了未来相关研究的重点方向,包括功能微生物、实验参数设置、塑料圈、塑料与土壤微生物的大尺度及长期研究等,为从微生物角度认识和解决土壤塑料污染问题提供参考.  相似文献   

10.
荒漠绿洲农田生态系统是干旱区环境下人类活动显著的复合生态系统.土壤微生物抗生素抗性与人类健康和生态平衡关系密切.研究荒漠绿洲环境不同土地利用类型模式下土壤抗生素抗性基因的多样性、分布特征和影响因素,对于评估干旱区土壤环境健康风险,促进绿洲农业生态的发展具有重要意义.采用高通量测序和高通量定量PCR技术对荒漠绿洲土壤微生物的群落结构和抗生素抗性基因多样性开展了研究,旨在探究干旱区土壤抗性基因的分布特征及其驱动机制.结果表明,从沙漠边缘到绿洲,荒漠沙生植物土壤、棉花地土壤、玉米地土壤、芦苇地土壤和湖泊沉积物中抗生素抗性的种类和丰度显著增加,与土地利用变化关系密切,农田土壤是抗性基因的重要存储库;荒漠绿洲土壤微生物群落与抗生素抗性基因显著相关,硫杆菌属(Thiobacillus)、沙漠细菌属(Pontibacter)、诺卡氏菌属(Nocardioides)、耐盐微杆菌属(Salinimicrobium)、土壤红杆菌属(Solirubrobacter)和链霉菌属(Streptomyces)等是各类抗性基因重要的潜在携带者;干旱区土壤中重(类)金属元素和可移动基因元件,与微生物群落共同塑造了抗生...  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

16.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

17.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

18.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

19.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

20.
Toxic effect of Zn(Ⅱ) on a green alga (Chlorella pyrenoidasa) in the presence of sepiolite and kaolinite was investigated.The Zn-free clays were found to have a negative impact on the growth of C.pyrenoidosa in comparison with control samples (without adding any clay or Zn(Ⅱ)).When Zn(Ⅱ) was added,the algae in the presence of clays could be better survived than the control samples,which was actually caused by a decrease in Zn(Ⅱ) concentration in the solution owing to the adsorption of Zn(Ⅱ) on the clays.When the solution system was diluted,the growth of algae could be further inhibited as compared to that in a system which had the same initial Zn(Ⅱ) concentration as in the diluted system.This in fact resulted from desorption of Zn(Ⅱ) from the zinc-contaminated clays,although the effect varied according to the different desorption capabilities of sepiolite and kaolinite.Therefore the adsorption and desorption processes of Zn(Ⅱ) played an important part in its toxicity,and adsorption and desorption of pollutants on soils/sediments should be well considered in natural eco-environmental systems before their risk of toxicity to aquatic organisms was assessed objectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号