首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
石油降解菌的筛选、降解特性及其与基因的相关性研究   总被引:10,自引:0,他引:10  
以Bush-hass培养基为筛选培养基,从3种不同来源的石油污染土壤中富集、分离、筛选获得16株可以以石油烃为唯一碳源的菌株。对菌株的生理生化性质、石油烃降解效果、菌株种属和菌株所含石油烃降解基因进行了检测。结果表明,筛选出的16株菌分属于铜绿假单胞菌(Pseudomonas aeruginosa)、施氏假单胞菌(Pseudomonas stutzeri)和不能确定种名的假单胞菌属(Pseudomonas)、不动杆菌属(Acinetobacter)、芽孢杆菌属(Bacillus)、黄杆菌属(Flavobacteriaceae)、埃希氏菌属(Escherichia)和无色杆菌属(Achromobacter)的细菌。其中7株菌株对水相中石油烃的降解率在降解时间为20 d时可达到31.5%~54.7%。对菌株的降解基因检测结果表明,当降解菌中同时含有双加氧酶和单加氧酶控制基因时,菌株对石油烃显示出较强的降解能力。  相似文献   

2.
以原油为唯一碳源,从长期被石油污染土壤的浸泡液中分离、筛选出2株降解原油的优良菌SY4和SY6,初步鉴定为: SY4和 SY6为芽孢杆菌属.通过降解性能实验的研究得出:2株菌对原油都有较强的降解能力,在摇床实验中,单一菌株在5 d后的原油降解率都高于60%,且2菌对原油的生物降解反应符合一级反应动力学特征.摇床实验和静态曝气实验都得出:SY6的降解能力比SY4强.通过本实验研究,为其实际应用提供一定的生物基础.  相似文献   

3.
从山东胜利油田沿海滩涂石油污染水体中分离得到1株以原油为唯一碳源的降解菌E-2.通过对原油降解率的测定,发现菌株E-2对石油具有较强的降解能力.在条件初步优化下培养5d,其对原油的降解率在扣除自然降解部分后达到50.51%.E-2最适宜生长条件为:温度37℃,pH =7.5.当NaCl质量浓度为0~5g·L-1,原油质量分数为0.75%~1.5%时菌株E-2处于最佳生长状态.通过GC-MS分析,菌株E-2对原油中链烃C34~C38的部分降解最显著,对链烃C26 ~ C33也有一定的降解作用,表明E-2对长链烃类的降解具有明显的优势.菌株E-2与优势菌株HB-1按1∶1组成混合菌液,两种菌株仍能各自显著降解链烃碳源,同时对C16~C30的降解明显增强,反映了两菌对这一段碳链的协同降解效果.HB-1与E-2按1∶1混合,石油降解率提高到63.62%(单独HB-1菌株石油降解率为54.62%);HB-1与E-2按1∶3混合,其降解率为80.60%;HB -1与E-2按3∶1混合,降解率为81.83%.  相似文献   

4.
一株对硫磷降解菌的诱变复壮研究   总被引:2,自引:0,他引:2  
从长期施用对硫磷的土壤中筛选分离出1株能以对硫磷为唯一C源的菌株D10,研究微生物对有机磷农药的降解作用.鉴定表明,D10为不动杆菌属(Acinetobacter sp.)微生物,该菌株对农药对硫磷的最大耐受质量浓度为1 800 mg/L,但D10对农药对硫磷的降解率仅为25%.本文通过D10诱变复壮试验提高对硫磷降解率,结果表明,经紫外线(18 W)辐照10 s后,D10对农药对硫磷降解率提高至49.1%; 用0.8%盐酸羟胺溶液振荡处理30 min后,降解率为69.6%; 用60%土壤浸出液振荡培养48 h后,降解率为53.9%.对D10进行上述条件下的复合诱变,对硫磷降解率可达到82.8%.高效降解菌的选育为提高微生物对农药的降解奠定了基础.此外,通过改进有机磷农药萃取的前处理方法,使紫外分光光度法检测简便、精确,与气相色谱法检测结果拟合较好,具有一定实用价值.  相似文献   

5.
苯酚和酚类化合物是工业废水中的主要环境污染物,如焦化厂、炼油厂和石油化工厂等,去除工业废水中的酚类化合物对环境保护有极其重要的意义。通过富集驯化,从石化污水处理厂的活性污泥中筛选出一株产生物表面活性剂的高效苯酚降解菌。并对其进行了生理生化鉴定及降解性能的研究。实验结果表明,BPH-3菌为假单胞杆菌;菌株最佳的降解条件pH=7.0,温度为30℃,转速为150 r/min,最高耐盐度为3%,在接种量为5%,苯酚初始质量浓度为600 mg/L,菌株12 h内的降解率可达100%。  相似文献   

6.
采用紫外线对一株Kosakonia sp.石油降解菌(S-1)进行紫外诱变育种。在照射功率15 W,波长为253.7 nm的条件下,确定最适诱变时间为140 s,此时正突变率最高。分离选育出一株遗传稳定的突变优势菌Y-16,与出发菌S-1相比,石油降解率提高了22.64%,且在pH值为5~9范围内,Y-16降油率均超过50%,对pH值的适应范围更广,在高浓度盐环境中有更好的耐盐性。经过60 d石油污染土壤的生物修复模拟试验发现,Y-16和S-1的最终石油降解率分别为91.83%和69.58%,其中降解36 d时,Y-16的降油率已达到71.19%,Y-16对石油的降解半衰期是S-1的0.4倍,降解周期更短,生物修复效果更好。  相似文献   

7.
砜嘧磺隆降解菌的分离及特性研究   总被引:1,自引:1,他引:0  
为了进行砜嘧磺隆污染的生物修复,从农药厂废水排放口的污泥中,通过富集培养和平板稀释法,分离筛选出一株具有较强降解砜嘧磺隆特性的菌株N2.通过形态观察及生理生化试验对其进行鉴定,同时对其性质进行了初步研究.结果表明,该菌株为沙雷氏菌属(Serratia marcecens);该菌株降解砜嘧磺隆的最适温度为30~35 ℃,最适pH值为6.0,适宜接种量(预培养24 h,离心后用缓冲液洗涤的菌种OD_600值为0.897)为1.0%(V/V),在72 h内对20 mg/L的砜嘧磺隆降解率为93.71%;随砜嘧磺隆质量浓度升高,降解率下降.研究表明该菌株有很好的实际应用价值.  相似文献   

8.
分别在山东泰安、聊城、菏泽、枣庄、潍坊长期施用涕灭威的农田采集土样,通过富集培养法筛选出1株降解涕灭威能力较高的细菌ZH-1,经生理生化与分子鉴定,该菌株为鞘氨醇杆菌(Sphingobac-terium sp.).为使该菌能更好地用于涕灭威残留污染治理,研究其生长和降解的适宜条件.结果表明.适合ZH-1菌株生长和降解的最佳碳源和氮源分别为蔗糖和硝酸钠;振荡(120 r/min)培养时该菌的适宜降解温度为30℃,且在低温时的生长和降解能力优于高温;培养基适宜pH值为7,且偏酸性条件下菌株的降解能力高于偏碱性条件;外加氮源硝酸钠的适宜质量分数为0.3%.在适宜培养条件下,恒温振荡培养5 d后菌株ZH-1对初始质量浓度为12.5 mg/L、25 mg/L、50mg/L、100mg/L、200mg/L的涕灭威的降解率分别为51%、58%、69%、50%、35%,对涕灭威的绝对去除量随着涕火威初始质量浓度的增加而增加.外加氮源质量分数低于0.3%时,菌株的生长量随外加氮源质量分数的增加而增加,因此可在实际应用中加入一定氮源以促进该菌的生长.  相似文献   

9.
从克拉玛依地区石油污染土壤中分离筛选出4株高效石油降解菌S1、S2、S5和S8,经形态观察、生理生化反应和分子鉴定,确定4株菌分别为蜡样芽孢杆菌(Bacillus cereus)、恶臭假单胞菌(Pseudomonas putida)、枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus licheniformis)。为了提高对石油的降解效率,对4株菌的添加比例进行了响应面的优化。结果表明,当石油含量为1.5 g时,菌种S1、S2、S5和S8接种量分别为0.21 g、0.22 g、0.41 g和0.22 g时的石油降解率达到最大值。在该条件下石油降解率预测值为60.17%,验证值为60.10%。  相似文献   

10.
在深圳大鹏澳海水鱼类网箱养殖区取得表层沉积物,通过2个月的间歇曝气选择性富集,分离出6株细菌,通过测定其对野生杂鱼鱼糜饵料有机物的降解能力,进一步筛选出4株对鱼糜饵料有机物有快速、高效降解能力的细菌.7 d培养生化需氧量(BOD7)范围在1 040~1 140 mg/L,5 d培养化学需氧量去除率(CODMn)范围在13.58%~46.9%,有机物的可生化降解性(BOD5/COD0)在81.56%~89.43%.4株细菌两两组合的5 d培养CODMn平均去除率为64.91%±6.51%,是单株菌平均去除率(30.60%±13.63%)的2倍多; 而BOD5/COD0范围在86.10%~89.13%,与单株菌间没有明显差别.通过部分长度16S rDNA序列分析,并与GenBank和EMBL数据进行同源性检索,结果表明,有2株细菌分别隶属于表皮葡萄球菌属(Staphylococcus sp.)和盐单胞菌属(Halomonas sp.),另2株分别与盐单胞菌属(Halomonas sp.)和假单胞菌属(Pseudomonas sp.)相近.  相似文献   

11.
桂林会仙湿地生态退化特征研究   总被引:1,自引:0,他引:1  
综合评价湿地的退化特征,可以为湿地的保护和修复提供参考依据。对桂林会仙湿地的地表水、地下水、土壤和生物等特征进行了调查和监测,并通过相关方法进行了比较分析。研究结果表明,会仙湿地的地表水污染严重,地下水水质较好;湿地土壤退化指数很低,退化程度严重;湿地植物资源丰富,大量动物已灭绝。研究成果为会仙湿地的治理修复方向提供了一定的理论依据。  相似文献   

12.
为了解析地预测钢筋混凝土桥墩在反复荷载作用下的非线性滞回特性 ,笔者运用实验中得到的力 -位移滞回曲线 ,对随轴压比、配筋率和配箍率的变化而变化的刚度和强度折减系数 ,进行了回归分析 ,并提出了计算表达式。按照笔者的理论力 -位移滞回模型 ,能预测现存钢筋混凝土桥墩的刚度和强度折减情况 ,对桥梁钢筋混凝土桥墩的可靠性和抗震性能的检验 ,有实用价值  相似文献   

13.
茜红染料废水光助氧化法降解脱色研究   总被引:1,自引:0,他引:1  
主要对光助氧化法处理印染废水进行了实验研究.探讨了单纯的紫外光光照时间、H2O2浓度、染料水溶液的初始pH值以及Fenton试剂中H2O2的浓度和Fe2 比值对COD cr去除率和脱色率的影响.结果表明,光助氧化法对茜红染料废水有比较好的处理效果,光照80 min,pH=3,H2O2浓度6 mmol/L,脱色率和COD cr去除率分别达到92.8%和84.4%,加入Fe2 并保持Fe2 :H2O2=1:5,尽管由于Fe2 及Fe3 的存在,脱色率下降为85.4%,而COD cr去除率升高到93.7%.  相似文献   

14.
五氯苯酚的降解研究进展   总被引:5,自引:0,他引:5  
综述了近年来我国在五氯苯酚(PCP)降解研究中取得的进展,并对五氯苯酚的化学与生物降解法进行了评述.在化学降解法中着重讨论了光催化降解和辐射降解,对比了常用光催化技术(UV,UV/H2O2,UV/H2O2/Fe(Ⅱ/Ⅲ),UV/TiO2)和辐射技术对PCP的降解效率及其影响因素,分析了其降解产物和降解机理.化学降解主要为自由基氧化降解,五氯苯酚在HO·、·O2-等自由基作用下,逐步脱氯生成多酚或醌,然后开环矿化.在微生物降解法中,综述了降解PCP微生物的筛选,论述了PCP在好氧和厌氧条件下的降解过程.五氯苯酚的生物降解路径为:好氧条件下,五氯苯酚在氢氧化酶作用下,被氧化生成氯代醌,并逐步脱去所有的氯原子,生成苯酚后开环;在厌氧和缺氧条件下,五氯苯酚还原脱氯,在得到电子的同时,脱掉一个氯取代基,最终矿化为CH4和CO2.PCP的降解研究对讨论其在环境中的迁移、转化以及含酚废水的处理具有重要意义.  相似文献   

15.
研究了电子束辐照降解锌氰络合物溶液,考察了总氰初始浓度、pH值、锌氰摩尔比对总氰的 降解效率的影响.实验结果表明,在相同的辐照剂量下,初始浓度越低越有利于锌氰络合物溶液总氰的彻底降解,锌氰络合物总氰浓度高其降解效率更高;电子束辐照降解锌氰络 合物溶液符合一级动力学方程;在相同的辐照剂量下,随着pH值和锌氰摩尔比降低,锌...  相似文献   

16.
从膨润土中筛选出可在含2 g/L苯酚的PDA培养基上生长的菌种,经过逐级驯化,得到1株可以在1 g/L苯酚的无机盐固体培养基上生长并降解苯酚的优势菌种HJ01,其对苯酚600 g/L降解率可达94%.该菌生长的适宜碳源和氮源分别为蔗糖和NH4Cl,温度为25 ℃,pH值范围为6-7.  相似文献   

17.
采用紫外光致水合电子这一新型技术降解水中的痕量NDMA,初步研究了紫外光致水合电子对NDMA的降解效能,重点考察了NDMA的一级分解产物DMA、亚硝酸盐及硝酸盐进一步的降解情况,并与紫外直接光解进行比较。结果表明,与紫外直接光解相比,紫外光致水合电子不仅能加快NDMA本身的降解速率,还能有效地促使NDMA的分解产物进一步降解,从而达到控制NDMA的再生、降低水的化学风险的目的。这项研究对于彻底消除水中的二甲基亚硝胺污染具有一定的理论指导意义。  相似文献   

18.
高压脉冲等离子体降解水中苯酚的实验研究   总被引:6,自引:0,他引:6  
对高压脉冲放电等离子体技术降解水中有机污染物苯酚进行了实验研究,观察了脉冲成形电容、脉冲峰值电压、脉冲频率、放电电极直径、放电距离、苯酚的人口质量浓度等因素对苯酚降解率的影响;实验结果表明脉冲成形电容有一最佳值;降解率随脉冲峰值电压、脉冲频率增大而升高,随放电电极直径和放电距离的减小而增大,随苯酚人口质量浓度增大而增大。  相似文献   

19.
研究土壤环境中农药的微生物降解是当今国际环境修复科学技术前沿领域的重要课题.从降解农药的微生物种类、降解农药的途径及机理、基因工程菌的构建等方面综述了近年来的研究进展,并提出了微生物降解农药研究领域的发展趋势和有待进一步解决的一些突出问题.  相似文献   

20.
实验研究了有机废气中的1.1-二氧乙烯(CH2=CCl2)在101.3kPa和288~308K下气相臭氧化降解过程及其反应动力学。结果表明,总的反应级数是2级,相对于臭氧和二氯乙烯浓度均为1级。反应速率常数可用方程Arrhenius(k2=8.32exp[-389.7/T])表示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号