首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Sustainable remediation concepts have evolved during the decade 2007–2017. From the establishment of the first Sustainable Remediation forum (SURF) in 2007, to publication of ASTM and ISO standards by 2017. Guidance has been developed around the world to reflect local regulatory systems, and much has been learned in applying sustainability assessment to contaminated site management projects. In the best examples, significant improvements in project sustainability have been delivered, including concurrent reduction of the environmental footprint of the remediation program, improved social performance, and cost savings and/or value creation. The initial advocates for the concept of sustainable remediation were quickly supported by early adopters who saw its potential to improve the remediation industry's performance, but they also had to overcome some inertia and scepticism from other parties. During the debates and discussions that occurred at numerous international conferences and SURF workshops around the world, various opinions were formed and positions stated. Some proved to be correct, others not so. With the recent publication of ISO Standard 18504 and the benefit of a decade's‐worth of hindsight on sustainable remediation programs implementation and project delivery, this paper summarizes a number of myths and misunderstandings that have been stated regarding sustainable remediation and seeks to debunk them. Sustainable remediation assessment shows us how to manage unacceptable risks to human health and the environment in the best, that is to say the most sustainable, way. It provides the contaminated land management industry a framework to incorporate sustainable development principles into remediation projects and deliver significant value for affected parties and society more broadly. In dispelling some myths about sustainable remediation set out in this paper, it is hoped that consistent application of ISO18504/SuRF‐UK (or equivalently robust guidance) will facilitate even wider use of sustainable remediation around the world.  相似文献   

2.
The US Sustainable Remediation Forum (SURF) created a compilation of metrics (Metrics Toolbox) in response to a need for a broad set of metrics that could be used to assess and monitor the effectiveness of remedies in achieving sustainability goals. Metrics are the key impacts, outcomes, or burdens that are to be assessed or balanced to determine the influences and impacts of a remedial action. Metrics can reflect any of the three aspects of sustainability (i.e., environmental, social, or economic) or a combination of these aspects. Regardless, metrics represent the most critical sustainable outcomes from the perspective of the key stakeholders. The Metrics Toolbox is hosted online at www.sustainableremediation.org/library/guidance‐tools‐and‐other‐resources . By selecting metrics from the Metrics Toolbox as a starting point and considering a potentially wider suite of metrics in remedial program decisions, appropriate assessments can be made. Qualitative and quantitative metrics are tabulated for each remedial phase: remedial investigation, remedy selection, remedial design, remedial construction, operation and maintenance, and closure. Attributes for each metric are described so that remediation practitioners and key stakeholders can view the universe of metrics available and select the most relevant, site‐specific metrics for a particular site. For this reason, SURF recommends that remediation practitioners consider the metrics compiled in the Metrics Toolbox as a companion to the sustainable remediation framework published elsewhere in this journal and other sustainability evaluations. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
In 2009, the Sustainable Remediation Forum released a white paper entitled “Integrating sustainable principles, practices, and metrics into remediation projects” (Ellis & Hadley, 2009, Remediation, 19, pp. 5–114). Sustainable remediation was a relatively new concept, and the white paper explored a range of approaches on how sustainability could be integrated into traditional remediation projects. This paper revisits the 2009 white paper, providing an overview of the early days of the evolving sustainable remediation practice and an assessment of the progress of sustainable remediation over the last 10 years with a primary focus on the United States. The current state of the sustainable remediation practice includes published literature, current practices and resources, applications, room for improvement, international progress, the virtuous cycle that applying sustainable remediation creates, and the status of the objectives cited in the 2009 white paper. Over the last decade, several sustainable remediation frontiers have emerged that will likely be a focus in advancing the practice. These frontiers include climate change and resiliency, weighting and valuation to help better consolidate different sustainable remediation metrics, programmatic implementation, and better integration of the societal impacts of sustainable remediation. Finally, as was the case for the 2009 white paper, this paper explores how sustainable remediation may evolve over the next 10 years and focuses on the events and drivers that can be significant in the pace of further development of the practice. The events and drivers include transformation impacts, societal influences, and the continued development of new technologies, approaches, and tools by remediation practitioners. The remediation industry has made significant progress in developing the practice of sustainable remediation and has implemented it successfully into hundreds of projects. While progress has been significant, an opportunity exists to implement the tenets of sustainable remediation on many more projects and explore new frontiers to help improve the communication, integration, and derived benefits from implementing sustainable remediation into future remediation projects.  相似文献   

4.
The US Sustainable Remediation Forum (SURF) proposes a nine‐step process for conducting and documenting a footprint analysis and life‐cycle assessment (LCA) for remediation projects. This guidance is designed to assist remediation practitioners in evaluating the impacts resulting from potential remediation activities so that preventable impacts can be mitigated. Each of the nine steps is flexible and scalable to a full range of remediation projects and to the tools used by remediation practitioners for quantifying environmental metrics. Two fictional case studies are presented to demonstrate how the guidance can be implemented for a range of evaluations and tools. Case‐study findings show that greater insight into a study is achieved when the nine steps are followed and additional opportunities are provided to minimize remediation project footprints and create improved sustainable remediation solutions. This guidance promotes a consistent and repeatable process in which all pertinent information is provided in a transparent manner to allow stakeholders to comprehend the intricacies and tradeoffs inherent in a footprint analysis or LCA. For these reasons, SURF recommends that this guidance be used when a footprint analysis or LCA is completed for a remediation project. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Sustainable remediation is the elimination and/or control of unacceptable risks in a safe and timely manner while optimizing the environmental, social, and economic value of the work. Forthcoming International Organization for Standardization (ISO) Standard on Sustainable Remediation will allow countries without the capacity to develop their own guidance to benefit from work done over the past decade by various groups around the world. The ISO standard has progressed through the committee draft (ISO/CD 18504) and draft international standard (ISO/DIS 18504) stages. The risk‐based approach to managing the legacy of historically contaminated soil and groundwater has been incorporated into policy, legislation, and practice around the world. It helps determine the need for remediation and the end point of such remediation. Remediation begins with an options appraisal that short lists strategies that could deliver the required reduction in risk. A remediation strategy comprises one or more remediation technologies that will deliver the safe and timely elimination and/or control of unacceptable risks. The ISO standard will help assessors identify the most sustainable among the shortlisted, valid alternative remediation strategies. Practitioners presenting case studies claiming to constitute sustainable remediation should now report how they have aligned their work with the new standard. Indicators are used to compare alternative remediation strategies. The simplest metric that allows a characteristic to act as an indicator should be chosen. Weightings indicators can become a contested exercise and should only be undertaken where there is a clear desire for it by stakeholders and a clear need for it in identifying a preferred strategy. The simplest means of ranking alternative remediation strategies should be adopted.  相似文献   

6.
The New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) issued a program policy focused on the overall sustainability of hazardous waste site cleanups on August 11, 2010. This DER‐31/Green Remediation program policy (DER‐31) was issued in accordance with 6 New York Codes, Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs. DER‐31 represents one of the first government‐issued green and sustainable remediation (GSR) policies in the United States. Consistent with other DER policies, DER‐31's provisions are broadly considered to be an expectation/requirement. GSR experts from within AECOM's Remediation Services (RS) Practice Area developed and implemented a GSR program designed to comply with DER‐31 provisions and have now broadly incorporated GSR into our New York remediation projects. Lessons learned from this experience in New York have influenced AECOM's global GSR program and implementation procedures and prompted the development of a new GSR tool (GSRxTM) for identifying and assessing GSR best management practices (BMPs), which has also been employed globally. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Framework for integrating sustainability into remediation projects   总被引:1,自引:0,他引:1  
The US Sustainable Remediation Forum (SURF) created this Framework to enable sustainability parameters to be integrated and balanced throughout the remediation project life cycle, while ensuring long‐term protection of human health and the environment and achieving public and regulatory acceptance. Parameters are considerations, impacts, or stressors of environmental, social, and economic importance. Because remediation project phases are not stand‐alone entities but interconnected components of the wider remediation system, the Framework provides a systematic, process‐based approach in which sustainability is integrated holistically and iteratively within the wider remediation system. By focusing stakeholders on the preferred end use or future use of a site at the beginning of a remediation project, the Framework helps stakeholders form a disciplined planning strategy. Specifically, the Framework is designed to help remediation practitioners (1) perform a tiered sustainability evaluation, (2) update the conceptual site model based on the results of the sustainability evaluation, (3) identify and implement sustainability impact measures, and (4) balance sustainability and other considerations during the remediation decision‐making process. The result is a process that encourages communication among different stakeholders and allows remediation practitioners to achieve regulatory goals and maximize the integration of sustainability parameters during the remediation process. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
This perspective article was prepared by members of the Sustainable Remediation Forum (SURF), a professional nonprofit organization seeking to advance the state of sustainable remediation within the broader context of sustainable site reuse. SURF recognizes that remediation and site reuse, including redevelopment activities, are intrinsically linked—even when remediation is subordinate to or sometimes a precursor of reuse. Although the end of the remediation life cycle has traditionally served as the beginning of the site's next life cycle, a disconnect between these two processes remains. SURF recommends a holistic approach that brings together remediation and reuse on a collaborative parallel path and seeks to achieve whole‐system sustainability benefits. This article explores the value of integrating remediation into the reuse process to fully exploit synergies and minimize the costs and environmental impacts associated with bringing land back into beneficial use. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The injection of remediation compounds has rapidly become a widely accepted approach for addressing contaminated sites. One of the most fundamental questions surrounding the use of in situ remediation has been “What compound are you injecting at your site?” With the advances in the industry's understanding and acceptance of the in situ remediation process remediation professionals are now asking a follow‐up question that has become equally important to the success of a project: “How are you injecting a compound at your site?” This article discusses advances in field applications for in situ remediation and injecting remediation compounds. © 2003 Wiley Periodicals, Inc.  相似文献   

10.
In the past decade, management of historically contaminated land has largely been based on prevention of unacceptable risks to human health and the environment, to ensure a site is “fit for use.” More recently, interest has been shown in including sustainability as a decision‐making criterion. Sustainability concerns include the environmental, social, and economic consequences of risk management activities themselves, and also the opportunities for wider benefit beyond achievement of risk‐reduction goals alone. In the United Kingdom, this interest has led to the formation of a multistakeholder initiative, the UK Sustainable Remediation Forum (SuRF‐UK). This article presents a framework for assessing “sustainable remediation”; describes how it links with the relevant regulatory guidance; reviews the factors considered in sustainability; and looks at the appraisal tools that have been applied to evaluate the wider benefits and impacts of land remediation. The article also describes how the framework relates to recent international developments, including emerging European Union legislation and policy. A large part of this debate has taken place in the “grey” literature, which we review. It is proposed that a practical approach to integrating sustainability within risk‐based contaminated land management offers the possibility of a substantial step forward for the remediation industry, and a new opportunity for international consensus. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Sustainable remediation guidance, frameworks, and case studies have been published at an international level illustrating established sustainability assessment methodologies and successful implementation. Though the terminology and indicators evaluated may differ, one common theme among international organizations and regulatory bodies is more comprehensive and transparent methods are needed to evaluate the social sphere of sustainable remediation. Based on a literature review and stakeholder input, this paper focused on three main areas: (1) status quo of how the social element of sustainable remediation is assessed among various countries and organizations; (2) methodologies to quantitatively and qualitatively evaluate societal impacts; and (3) findings from this research, including challenges, obstacles, and a path forward. In conclusion, several existing social impact assessment techniques are readily available for use by the remediation community, including rating and scoring system evaluations, enhanced cost benefit analysis, surveys/interviews, social network analysis, and multicriteria decision analysis. In addition, a list of 10 main social indicator categories were developed: health and safety, economic stimulation, stakeholder collaboration, benefits community at large, alleviate undesirable community impacts, equality issues, value of ecosystem services and natural resources, risk‐based land management and remedial solutions, regional and global societal impacts, and contributions to other policies. Evaluation of the social element of remedial activities is not without challenges and knowledge gaps. Identification of obstacles and gaps during the project planning process is essential to defining sustainability objectives and choosing the appropriate tool and methodology to conduct an assessment. Challenges identified include meaningful stakeholder engagement, risk perception of stakeholders, and trade‐offs among the various triple bottom line dimensions. ©2015 Wiley Periodicals, Inc.  相似文献   

12.
Established groundwater contaminants such as chlorinated solvents and hydrocarbons have impacted groundwater at hundreds of thousands of sites around the United States and have been responsible for multibillion dollar remediation expenditures. An important question is whether groundwater remediation for the emerging contaminant class comprised of per‐ and polyfluoroalkyl substances (PFAS) will be a smaller, similar, or a larger‐scale problem than the established groundwater contaminants. A two‐pronged approach was used to evaluate this question in this paper. First, nine quantitative scale‐of‐remediation metrics were used to compare PFAS to four established contaminants: chlorinated solvents, benzene, 1,4‐dioxane, and methyl tert‐butyl ether. These metrics reflected the prevalence of the contaminants in the U.S., attenuation potential, remediation difficulty, and research intensity. Second, several key challenges identified with PFAS remediation were evaluated to see similar situations (qualitative analogs) that have been addressed by the remediation field in the past. The results of the analysis show that four out of nine of the evaluated quantitative metrics (production, number of potential sites, detection frequency, required destruction/removal efficiency) indicate that the scale of PFAS groundwater remediation may be smaller compared to the current scale of remediation for conventional groundwater contaminants. One attenuation metric, median plume length, suggests that overall PFAS remediation could pose a greater challenge compared to hydrocarbon sites, but only slightly larger than chlorinated volatile organic compounds sites. The second attenuation metric, hydrophobic sorption, was not definitive regarding the potential scale of PFAS remediation. The final three metrics (regulatory criteria, in‐situ remediation capability, and research intensity) all indicate that PFAS remediation might end up being a larger scale problem than the established contaminants. An assessment of the evolution of groundwater remediation capabilities for established contaminants identified five qualitative analogs for key PFAS groundwater remediation issues: (a) low‐level detection analytical capabilities; (b) methods to assess the risk of complex chemical mixtures; (c) nonaqueous phase dissolution as an analog for partitioning, precursors, and back diffusion at PFAS sites; (d) predictions of long plume lengths for emerging contaminants; and (e) monitored natural attenuation protocols for other non‐degrading groundwater contaminants. Overall the evaluation of these five analogs provided some comfort that, while remediating the potential universe of PFAS sites will be extremely challenging, the groundwater community has relevant past experience that may prove useful. The quantitative metrics and the qualitative analogs suggest a different combination of remediation approaches may be needed to deal with PFAS sites and may include source control, natural attenuation, in‐situ sequestration, containment, and point‐of‐use treatment. However, as with many chlorinated solvent sites, while complete restoration of PFAS sites may be uncommon, it should be possible to prevent excessive exposure of PFAS to human and ecological receptors.  相似文献   

13.
As a remediation tool, nanotechnology holds promise for cleaning up hazardous waste sites cost‐effectively and addressing challenging site conditions, such as the presence of dense nonaqueous phase liquids (DNAPLs). Some nanoparticles, such as nanoscale zero‐valent iron (nZVI) are already in use in full‐scale projects with encouraging success. Ongoing research at the bench and pilot scale is investigating particles such as self‐assembled monolayers on mesoporous supports (SAMMS™), dendrimers, carbon nanotubes, and metalloporphyrinogens to determine how to apply their unique chemical and physical properties for full‐scale remediation. There are many unanswered questions regarding nanotechnology. Further research is needed to understand the fate and transport of free nanoparticles in the environment, whether they are persistent, and whether they have toxicological effects on biological systems. In October 2008, the U.S. Environmental Protection Agency's Office of Superfund Remediation and Technology Innovation (OSRTI) prepared a fact sheet entitled “Nanotechnology for Site Remediation,” and an accompanying list of contaminated sites where nanotechnology has been tested. The fact sheet contains information that may assist site project managers in understanding the potential applications of this group of technologies. This article provides a synopsis of the US EPA fact sheet, available at http://clu‐in.org/542F08009 , and includes background information on nanotechnology; its use in site remediation; issues related to fate, transport, and toxicity; and a discussion of performance and cost data for field tests. The site list is available at http://clu‐in.org/products/nanozvi . © 2008 Wiley Periodicals, Inc.  相似文献   

14.
Remediation of a large separate‐phase hydrocarbon product and associated dissolved‐phase gasoline plume was accelerated by coupling multiphase extraction with in situ microbial stimulation. At the beginning of remediation activities, the separate‐phase hydrocarbon plume extended an estimated seven acres with product thickness measuring up to 2.1 feet thick. Within 18 months after beginning extraction, reduction of gasoline constituents in groundwater became asymptotic and measureable product disappeared from the upgradient source area. At that time, the remediation team initiated a program of limited in situ anaerobic bioremediation with the goal of stimulating production of natural surfactants from native microbes to release petroleum from the soil matrix. Groundwater concentrations of gasoline constituents increased gradually over the next three years, improving recovery without biofouling the pump‐and‐treat infrastructure. Using this approach, the groundwater component of the remedy was completed in less than five years, substantially less than the 10 years to 15 years predicted by modeling. This strategy demonstrated a more sustainable approach to remediation, reducing electrical usage by an estimated 800 megawatt hours, reducing infrastructure requirements, and preserving an estimated 150 million gallons of groundwater for this arid agricultural area. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A detailed cradle‐to‐grave life‐cycle assessment (LCA) of an in situ thermal treatment remedy for a chlorinated‐solvent‐contaminated site was performed using process LCA. The major materials and activities necessary to install, operate, monitor, and deconstruct the remedy were included in the analysis. The analysis was based on an actual site remedy design and implementation to determine the potential environmental impacts, pinpoint major contributors to impacts, and identify opportunities for improvements during future implementation. The Electro‐Thermal Dynamic Stripping Process (ET‐DSP?) in situ thermal technology coupled with a dual‐phase extraction and treatment system was evaluated for the remediation of 4,400 yd3 of tetrachloroethene‐ and trichloroethene‐impacted soil, groundwater, and bedrock. The analysis was based on an actual site with an estimated source mass of 2,200 lbs of chlorinated solvents. The remedy was separated into four stages: remedy installation, remedy operation, monitoring, and remedy deconstruction. Environmental impacts were assessed using Sima Pro software, the ecoinvent database, and the ReCiPe midpoint and endpoint methods. The operation stage of the remedy dominated the environmental impacts across all categories due to the large amount of electricity required by the thermal treatment technology. Alternate sources of electricity could significantly reduce the environmental impacts of the remedy across all impact categories. Other large impacts were observed in the installation stage resulting from the large amount of diesel fuel, steel, activated carbon, and asphalt materials required to implement the technology. These impacts suggest where opportunities for footprint reductions can be found through best management practices such as increased materials reuse, increased recycled‐content materials use, and clean fuels and emission control technologies. Smaller impacts were observed in the monitoring and deconstruction stages. Normalized results show the largest environmental burdens to fossil depletion, human toxicity, particulate matter formation, and climate‐change categories resulting from activities associated with mining of fossil fuels for use in electricity production. In situ thermal treatment can reliably remediate contaminated source areas with contaminants located in low‐permeability zones, providing complete destruction of contaminants in a short amount of time, quick return of the site to productive use, and minimized quantities of hazardous materials stored in landfills for future generations to remediate. However, this remediation strategy can also result in significant emissions over a short period of time. It is difficult to quantify the overall value of short‐term cleanups with intense treatment emissions against longer‐term cleanups with lower treatment emissions because of the environmental, social, and economic trade‐offs that need to be considered and understood. LCA is a robust, quantitative tool to help inform stakeholder discussions related to the remedy selection process, trade‐off considerations, and environmental footprint‐reduction opportunities, and to complement a broader toolbox for the evaluation of sustainable remediation strategies. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

17.
In situ remediation represents a series of challenges in interpreting the monitoring data on remedial progress. Among these challenges are problems in determining the progress of the remediation and the mechanisms responsible, so that the process can be optimized. The release of organic pollutants to groundwater systems and in situ remediation technologies alter the groundwater chemistry, but outside of natural attenuation studies using inorganic chemical analyses as indicators of intrinsic biodegradation, typically little attention has been paid to the changes in inorganic groundwater chemistry. Smith (2008) noted that during an electrical resistance heating remediation that took place at a confidential site in Chicago, a two‐orders‐of‐magnitude increase in chloride concentrations occurred during the remediation. This increase in chloride resulted in a corresponding increase in calcium as a result of what is known as the common ion effect. Carbon dioxide is the gas found in highest concentrations in natural groundwater (Stumm & Morgan, 1981), and its fugacity (partial pressure) corresponds directly with calcium concentrations. Carbon dioxide at supersaturation in groundwater is capable of dissolving organic compounds, such as trichloroethene, facilitating removal of nonaqueous‐phase liquids at temperatures below the boiling point of water. One means of diagnosing these reactions is through the use of compound‐specific isotopic analysis, which is capable of distinguishing between evaporation, biodegradation, and differences in sources. The appropriate diagnosis has the potential to optimize the benefits from these reactions, lower energy costs for removal of nonaqueous‐phase liquids, and direct treatment where it is needed most. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
1,4‐Dioxane remediation is challenging due to its physiochemical properties and low target treatment levels. As such, applications of traditional remediation technologies have proven ineffective. There are a number of promising remediation technologies that could potentially be scaled for successful application to groundwater restoration. Sustainable remediation is an important consideration in the evaluation of remediation technologies. It is critically important to consider sustainability when new technologies are being applied or new contaminants are being treated with traditional technologies. There are a number of social, economic, and environmental drivers that should be considered when implementing 1,4‐dioxane treatment technologies. This includes evaluating sustainability externalities by considering the cradle‐to‐grave impacts of the chemicals, energy, processes, transportation, and materials used in groundwater treatment. It is not possible to rate technologies as more or less sustainable because each application is context specific. However, by including sustainability thinking into technology evaluations and implementation plans, decisions makers can be more informed and the results of remediation are likely to be more effective and beneficial. There are a number sustainable remediation frameworks, guidance documents, footprint assessment tools, life cycle assessment tools, and best management practices that can be utilized for these purposes. This paper includes an overview describing the importance of sustainability in technology selection, identifies sustainability impacts related to technologies that can be used to treat 1,4‐dioxane, provides an approximating approach to assess sustainability impacts, and summarizes potential sustainability impacts related to promising treatment technologies. ©2016 Wiley Periodicals, Inc.  相似文献   

19.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

20.
In situ remediation is inherently considered “green remediation.” The mechanisms of destruction by in situ technologies, however, are often unseen and not well understood. Further, physical effects of amendment application affect concentration data in an identical manner as the desired reactive mechanism. These uncertainties have led to the weight‐of‐evidence approach when proving viability: multiple rounds of data collection, bench studies, pilot studies, and so on. Skipping these steps has resulted in many failed in situ applications. Traditional assessment data are often tangential to the desired information (e.g., “Is contaminant being destroyed or just being pushed around and diluted?” and “What is the mechanism of the destruction and can it be monitored directly?”). An advanced site diagnostic tool, “Three‐Dimensional Compound Specific Stable Isotope Analysis” (3D‐CSIA), can assess the viability of in situ technologies by providing definitive data on contaminant destruction that are not concentration‐related. The 3D‐CSIA tool can also locate source zones and apportion remediation cost by identifying plumes of different isotope signatures and fractionation trends. Further, use of the 3D‐CSIA tool allows remediation professionals to evaluate effectiveness of treatment and make better decisions to expedite site closure and minimize costs. This article outlines the fundamentals of advanced site diagnostic tool 3D‐CSIA in detail, and its benefit is highlighted through a series of case studies at chlorinated solvent–contaminated sites. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号