首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We investigated whether nitrate-N (NO3(-)-N) concentrations of shallow groundwater (< 30 m from the land surface) in a region of intensive agriculture could be predicted on the basis of land use information, topsoil properties that affect the ability of topsoil to generate nitrate at a site, or the 'leaching risk' at different sites. Groundwater NO3(-)-N concentrations were collected biannually for 3 years at 88 sites within the Waikato Region of New Zealand. The land use was classed as either the predominant land use of the farm where the well or bore was located, or the dominant land use within a 500 m radius of the well or bore. Topsoil properties that affect the ability of soil to generate nitrate were also measured at all the sites, and a leaching risk assessment model 'DRASTIC' was used to assess the risk of NO3(-)-N leaching to groundwater at each site. The concentration of NO3(-)-N in shallow groundwater in the Waikato Region varied considerably, both temporally and spatially. Nine percent of sites surveyed had groundwater NO3(-)-N concentrations exceeding maximum allowable concentrations of 11.3 ppm recommended by the World Health Organisation for potable drinking water which is accepted as a public health standard in New Zealand. Over half (56%) of the sites had concentrations that exceeded 3 ppm, indicating effects of human activities (commonly referred to as a human activity value). Very few trends in NO3(-)-N concentration that could be attributed to land use were identified, although market garden sites had higher concentrations of NO3(-)-N in underlying groundwater than drystock/sheep sites when the land use within 500 m radius of a sampling site was used to define the land use. There was also some evidence that within a district, NO3(-)-N concentrations in groundwater increased as the proportion of area used for dairy farming increased. Compared to pastoral land, market gardens had lower total C and N, potentially mineralisable N and denitrifying enzyme assay. However, none of these soil properties were directly related to groundwater NO3(-)-N concentrations. Instead, the DRASTIC index (which ranks sites according to their risk of solute leaching) gave the best correlation with groundwater NO3(-)-N concentrations. The permeability of the vadose zone was the most important parameter. The three approaches used were all considered unsuitable for assessing nitrate concentrations of groundwater, although a best-fit combination of parameters measured was able to account for nearly half the variance in groundwater NO3(-)-N concentrations. We suggest that non-point source groundwater NO3(-)-N contamination in the region reflects the intensive agricultural practices, and that localised, site-specific, factors may affect NO3(-)-N concentrations in shallow groundwaters as much as the general land use in the surrounding area.  相似文献   

2.
During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.  相似文献   

3.
The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 ?-N and NH4 +-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099?~?33.23 ng N2O-N g?1 h?1) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 ?-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 ?-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and pH. Nitrate supply and temperature finally decided the spatiotemporal distribution patterns of urban riparian denitrification. Considering both the low DR of existing riparian soils and the significance of nonpoint source nitrogen pollution, the substantial denitrification potential of urban riparian soils should be utilized to reduce nitrogen pollution using proper engineering measures that would collect the polluted urban rainfall runoff and make it flow through the riparian zones.  相似文献   

4.
Huang JS  Tsai CC  Chou HH  Ting WH 《Chemosphere》2006,62(1):61-70
Nitrification-denitrification in a single-sludge nitrogen removal system (SSNRS; with a sufficient carbon source for denitrification) was performed. With an increase in the mixed liquor recycle ratio (R(m)) from 1 to 2, the total nitrogen (TN) removal efficiency at a lower volumetric loading rate (VLR=0.21 NH(4)(+)-N m(-3) d(-1)) increased, but the TN removal efficiency at a higher VLR (0.35 kg NH(4)(+)-N m(-3) d(-1)) decreased. A kinetic model that accounts for the mass fractions of Nitrosomonas, Nitrobacter, nitrate reducer and nitrite reducer (f(n1), f(n2), f(dn1), and f(dn2)) in the SSNRS and an experimental approach for the estimation of the mass fractions of nitrogen-related microbial groups are also proposed. The estimated f(dn1) plus f(dn2) (0.65-0.83) was significantly larger than the f(n1) plus f(n2) (0.28-0.32); the f(n1) (0.21-0.26) was larger than the f(n2) (0.05-0.07); and the f(dn1) (0.32-0.45) varied slightly with the f(dn2) (0.33-0.38). At the lower VLR, the f(dn1) plus f(dn2) increased with increasing R(m); however at the higher VLR, the f(dn1) plus f(dn2) did not increase with increasing R(m). By using the kinetic model, the calculated residual NH(4)(+)-N and NO(2)(-)-N in the anoxic reactor and NO(2)(-)-N and NO(3)(-)-N in the aerobic reactor were in fairly good agreement with the experimental data; the calculated NO(3)(-)-N in the anoxic reactor was over-estimated and the calculated NH(4)(+)-N in the aerobic reactor was under-estimated.  相似文献   

5.
Walker JT  Geron CD  Vose JM  Swank WT 《Chemosphere》2002,49(10):1389-1398
In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N2O fluxes were 5.8, 2.0, and 76.7 ng N m−2 s−1 (1.83, 0.63, and 24.19 kg N ha−1 y−1), respectively. Fluxes in the grazed riparian zone were larger, especially for NO and NH3, measuring 9.1, 4.3, and 77.6 ng N m−2 s−1 (2.87, 1.35, and 24.50 kg N ha−1 y−1) for NO, NH3, and N2O, respectively. On average, N2O accounted for greater than 85% of total trace gas flux in both the recovering and grazed riparian zones, though N2O fluxes were highly variable temporally. In the recovering riparian zone, variability in seasonal average fluxes was explained by variability in soil nitrogen (N) concentrations. Nitric oxide flux was positively correlated with soil ammonium (NH4+) concentration, while N2O flux was positively correlated with soil nitrate (NO3) concentration. Ammonia flux was positively correlated with the ratio of NH4+ to NO3. In the grazed riparian zone, average NH3 and N2O fluxes were not correlated with soil temperature, N concentrations, or moisture. This was likely due to high variability in soil microsite conditions related to cattle effects such as compaction and N input. Nitric oxide flux in the grazed riparian zone was positively correlated with soil temperature and NO3 concentration. Restoration appeared to significantly affect NO flux, which increased ≈600% during the first year following restoration and decreased during the second year to levels encountered at the onset of restoration. By comparing the ratio of total trace gas flux to soil N concentration, we show that the restored riparian zone is likely more efficient than the grazed riparian zone at diverting upper-soil N from the receiving stream to the atmosphere. This is likely due to the recovery of microbiological communities following changes in soil physical characteristics.  相似文献   

6.
Kiso Y  Jung YJ  Kuzawa K  Seko Y  Saito Y  Yamada T  Nagai M 《Chemosphere》2006,64(11):1949-1954
A spot test for aqueous nitrate and nitrite for controlling nitrogen removal performance in small-scale wastewater treatment facilities is proposed. In this method, NO(2)(-) ion in water samples was allowed to react with sulfanilic acid and 1-naphthol to form an anionic azo dye. The resulting colored solution was introduced onto a mini column (similar to a gas detecting tube) packed with PVC particles coated with benzyl cetyl dimethyl ammonium chloride (BCDMA) and biphenyl. The NO(2)(-)-N concentration was determined visually by measuring the color band length (CBL) in the column. The CBL correlates linearly with nitrite concentration in the 4-20 mg-N l(-1) range. The concentration of nitrite+nitrate was determined after reduction to nitrite with zinc. The concentration of NO(3)(-)-N species was calculated by difference. This method was used to visually determine the concentrations of NO(2)(-)-N and (NO(2)(-)+NO(3)(-))-N in domestic wastewater samples with maximum suspended solid (SS) and chemical oxygen demand (COD) concentrations of 114 mg l(-1) and 73.9 mg l(-1), respectively.  相似文献   

7.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

8.
Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4(+), NO3(-), and NO2(-) nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4(+)-N in a 1-day sample, which continued until 90 days. Some declines in NO3(-)N were found from 15 to 60 days. Along with this decline, significant increases in NO2(-)N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3(-)N and the decline in NH4+NO2(-)-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4(+)-N, NO2(-)-N and nitrate reductase activity and some adverse effects on NO3(-)N between 15 and 90 days.  相似文献   

9.
Much attention has been paid to ozone as a major cause of novel forest decline in Europe. In combination with acidic mist, O(3) has been observed to increase ion leaching. Besides cations lake Mg(2+), Ca(2+), K(+), NH(4)(+), considerable amounts of nitrate were found to be leached by acidic mist from needles of Norway spruce. Controlled fumigation experiments, with 100, 300, and 600 microg O(3)m(-3) over 22 days continuously, have led to a nitrate accumulation of 94.1 +/- 14.8, 119.4 +/- 28.7 and 198.9 +/- 14.9 microg NO(3)(-1) g(-1) FW, respectively, in leaves of Quercus robur. Similar values were found in leaves of Fagus sylvatica and current and previous year needles of Picea abies. Nitrate levels of controls receiving charcoal filtered air were well below 40 microg NO(3)(-) g (-1) FW. Statistically significant elevated nitrate levels were observed after only 48 h of continuous fumigation with 600 microg O(3)m(-3), in all tree species tested, and after 144 h in the 100 microg O(3)m(-3) treatment. In another experiment, trees of Picea abies were kept in two charcoal (C) and two Purafil plus charcoal (P/C) ventilated chambers, and fumigated with O and 500 microg O(3)m(-3) in cabinets of each filter-type in order to eliminate NO(x) from chamber air. After 29 days of continuous ozone fumigation, NO(3)(-) accumulation in needles amounted to 102.0 +/- 37.7 and 137.4 +/- 40.5 microg g(-1) FW in P/C and C-filtered chambers, respectively. Nitrate contents of controls were below 30 microg NO(3)(-)g(-1) FW at the end of the experiment. No significant differences in NO(3)(-) accumulation between filter treatments were observed. Since NO(x) was reduced by more than 95% in the Purafil/charcoal versus the charcoal treatment, NO(3)(-) accumulation in needles can be attributed predominantly to the influence of ozone and not to direct NO(2) uptake of needles by the possible oxidation of NO to NO(2) in the presence of ozone.  相似文献   

10.
ABSTRACT

In the present work, nitrous oxide emissions were estimated [mg/L] by the use of lysimeters under the closed chamber technique for a six month period. The lysimeters were classified by the type of irrigation used: one for drinking water, and the other for treated wastewater. Each lysimeter had two different types of soil (sand and clay), based on the types of soil in Chihuahua City, Mexico. An additional classification based on the depth was done (reticular and vadose zone). Each zone collected gas by the use of a closed chamber technique, allowing the samples to be taken for subsequent quantification and analysis by gas chromatography. A statistical analysis of variance (ANOVA) and principal components analysis (PCA) were conducted to identify the most influential variables or parameters in the formation of nitrous oxide. The variables that were considered for analysis were total Kjeldahl nitrogen (TKN), ammoniacal nitrogen (NH3-N), nitrate nitrogen (NO3-N), and nitrite nitrogen (NO2-N), along with meteorological parameters. In total, 58944 mg/L of N2O were emitted during the measurement period. The results showed that concentration emissions of N2O where the type of soil is sandy were smaller than those of clay soil, while the mean concentration in the vadose zone was higher than those in the reticular zone, regardless the type of soil. The parameters that showed greater influence in the N2O emissions were NO2-N and NO3-N concentrations. Temperature also played an important role in the emissions (the highest emissions were emitted during the cold months). Furthermore, denitrification appeared to be the dominant process in the production of nitrous oxide in soils.

Implications: Nitrous oxide (N2O) emissions produced in lysimeters with two types of soil (sand and clay) at two different depths (vadose and reticular zones) using treated waste water showed that the higher emissions of N2O are derived from clay soils in vadose zone; it could be due to the formation of clogging that favors the formation of anoxic conditions for the denitrification process. The parameters that showed more influence in the N2O emissions were nitrite (NO2-N) and nitrate (NO3-N) concentrations along with the temperature.  相似文献   

11.
Nitrate nitrogen was measured in runoff and tile-drainage during two years of operation of instrumented, large-scale lysimeters planted to corn (Zea mays L.) and amended with sewage sludge which was applied at rates supplying total N amounting to 2292 kg ha(-) in 1972 and 3286 kg ha(-1) in 1973. Other lysimeters were amended with inorganic fertiliser at the rate of 336 kg N ha(-1) year(-1). Annual losses in runoff and tile-drainage from sludge treatments were 0.9 and 5.1 and 371 and 663 kg NO(3)(-)-N ha(-1). Losses from lysimeters treated with inorganic fertiliser were 1.1 and 3.3 kg NO(3)(-)-N ha(-1) year(-1) in runoff and 31 and 79 kg NO(3)(-)-N ha(-1) year(-1) in tile-drainage. Given the nitrogen inputs accounted for in the study design, unaccounted for losses of 1800 to 2400 kg ha(-1) year(-1) were calculated for sludge and 277 kg ha(-1) year(-1) for inorganic fertiliser treatments. For one year there was a 300 kg ha(-1) increase in N in the lysimeters receiving inorganic fertiliser. Median NO(3)(-)-N concentrations ranged from 8.9 to 14.0 mg litre(-1) in runoff from sludge-treated lysimeters and 3.6 to 5.9 mg litre(-1) in runoff from lysimeters receiving inorganic fertiliser. In tile-drainage the median NO(3)(-)-N concentrations were 148 to 223 mg litre(-1) and 24 to 44 mg litre(-1) for sludge and inorganic fertiliser treatments, respectively. Highest runoff levels occurred in early summer storms, whereas highest tile-drainage concentrations occurred in late winter and early spring.  相似文献   

12.
Several microcosm wetlands unplanted and planted with five macrophytes (Phragmites australis, Commelina communis, Penniserum purpureum, Ipomoea aquatica, and Pistia stratiotes) were employed to remove nitrate from groundwater at a concentration of 21-47 mg NO3-N/l. In the absence of external carbon, nitrate removal rates ranged from 0.63 to 1.26 g NO3-N/m2/day for planted wetlands. Planted wetlands exhibited significantly greater nitrate removal than unplanted wetlands (P<0.01), indicating that macrophytes are essential to efficient nitrate removal. Additionally, a wetland planted with Penniserum showed consistently higher nitrate removal than those planted with the other four macrophytes, suggesting that macrophytes present species-specific nitrate removal efficiency possibly depending on their ability to produce carbon for denitrification. Although adding external carbon to the influent improved nitrate removal, a significant fraction of the added carbon was lost via microbial oxidation in the wetlands. Planting a wetland with macrophytes with high productivity may be an economic way for removing nitrate from groundwater. According to the harvest result, 4-11% of nitrogen removed by the planted wetland was due to vegetation uptake, and 89-96% was due to denitrification.  相似文献   

13.
在以农田.防护林.鱼塘为主的农业缓冲带一宜兴周铁太湖湖滨带内,比较和分析了不同降水时期和不同鱼塘排水时期湖滨带的缓冲效果。结果显示湖滨带的主要污染物是有机污染物、TN和Chla,尤其是有机污染物;TP污染相对较轻,NH4+-N和BOD5污染很少。太湖湖滨带对N、P、COD等指标均有一定的缓冲效果,但对不同指标的缓冲能力不同,其中对N的缓冲效果更为明显。除COD外,湖滨带出水口基本可以达到IV类水水平。同时,强降雨导致大量污染物进入水体,导致水体污染物输出浓度显著增高,最为突出的是TN、TP和有机污染物。在垂直于太湖段,除NO3--N和NO2--N浓度略微下降外,其他水质指标均呈上升趋势。因此,该湖滨带的缓冲能力不足以净化来自地表和鱼塘的污染物质。在平行于太湖段。除NO3--N和NO2--N浓度逐步增高外,其他水质指标均呈下降趋势,说明包括河流在内的整个湖滨带的缓冲能力较高,净化作用大于湖滨带纳入的污染物质,缓冲效果好。鱼塘排水对水体的影响非常明显,这种影响大概可以持续2周左右。通过对不同时期的采样结果进行显著性分析,发现COD差异性不显著,且含量高,即有机污染物在各时期都是主要污染物。在鱼塘放水时期(已进入冬季),各指标下的采样点之间均不显著,湖滨带的缓冲作用较低。  相似文献   

14.
Liou RM  Huang SN  Lin CW 《Chemosphere》2003,50(2):237-246
Flooded rice fields are one of the major biogenic methane sources. In this study, methane emission rates were measured after transplanting in paddy fields with application of two kinds of nitrogen fertilizers (ammonium sulfate, NH4+-N and potassium nitrate, NO3(-)-N) and with two kinds of rice varieties (Japonica and Indica). The experiment was conducted in fields located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08"N, 120 degrees 16'26"E) of southern Taiwan throughout the first and the second crop seasons in 1999. The seasonal methane flux in the first crop season with NH4+-N and NO3(-)-N ranged from 2.48 to 2.78 and from 8.65 to 9.22 g CH4 m(-2); and the values ranged 24.6-34.2 and 36.4-52.6 g CH4 m(-2) in the second crop season, respectively. In the first crop season, there were significantly increased 3.1-3.7-fold in methane emission fluxes due to plantation of Indica rice. In comparison of two rice varieties, the Indica rice variety showed a tendency for larger methane emission than the Japonica rice variety in the second crop season. Moreover, ammonium sulfate treatment significantly reduced CH4 emissions by 37-85% emissions compared to potassium nitrate plots. It was concluded that the CH4 emission was markedly dependent on the type of nitrogen fertilizer and rice variety in Taiwan paddy soils.  相似文献   

15.
Catchment acidification-from the top down   总被引:1,自引:0,他引:1  
Three main factors define the speed of catchment acidification: the total input of pollutants; the thickness and character of soils, including the nature of the bedrock; and the size of subcatchments. The aerial input of pollutants in the Harz is among the highest in Central Europe (e.g. SO4-S: 22-70 kg (ha year)(-1); NO3-N: 9-10 kg (ha year)(-1); NH4-N: 10-15 kg (ha year)(-1) and Cd: 2.6-8.7 g (ha year)(-1); Cu: 34-125 g (ha year)(-1); Pb: 150-380 g (ha year)(-1); Zn: 105-560 g (ha year)(-1)). Thick soil profiles (2-4 m) acidify from the top down. Whether the soils will neutralize incoming acids depends on their buffering capacity. The small headwater subcatchments acidify first and subsequently release acidic water with pH values down to < or = 40. Four brook zones can be divided by the composition of their biocoenoses. The latter depend on the degree of acidification. These zones are also characterized by different hydrochemical conditions.  相似文献   

16.
The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 x day], NH4+, NO3- and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4+-N, and NO3--N were measured. Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4+ N, and NO3--N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4+-N were estimated at about 150 g COD/m3 x day and 20 g COD/m3 x day, while those of crushed column under anaerobic condition (column E) for COD and NO3--N at about 400 and 150 g COD/m3 x day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively.  相似文献   

17.
To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35kg N enriched with the stable isotope (15)N (2110 per thousand delta(15)N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50kg ha(-1) year(-1). The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at G?rdsj?n, Sweden. The (15)N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9years following the (15)N addition. During the year of the (15)N addition the delta(15)N level in runoff largely reflected the level in incoming N, indicating that the leached NO(3)(-) came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON.  相似文献   

18.
The long-term stability of a biofilter loaded with waste gases containing NH3 concentrations larger than 100 ppmv was studied in a laboratory-scale compost reactor. At an empty bed residence time (tau) of 21 sec, elimination capacities of more than 300 g NH3/m3/day were obtained at elimination efficiencies up to 87%. Because of absorption and nitrification, almost 80% of the NH3-N eliminated from the waste gas could be recovered in the compost as NH4(+)-N or NO2-/NO3(-)-N. The high elimination capacities could be maintained as long as the NH4+/ NOX- concentration in the carrier material was less than 4 g NH4+/NOx(-)-N/kg wet compost. Above this critical value, osmotic effects inhibited the nitrifying activity, and the elimination capacity for NH3 decreased. To restore the biofilter performance, a carbon source (methanol) was added to reduce NH4+/NOx- accumulated in the compost. Results indicate that methylotrophic microorganisms did convert NH4+/NOx- into biomass, as long as the NO3- content in the compost was larger than 0.1 g NO3(-)-N/kg compost. Removal efficiencies of CH3OH of more than 90% were obtained at volumetric loads up to 11,000 g CH3OH/ m3/day. It is shown that addition of CH3OH is a suitable technique for regenerating the compost material from osmotic inhibition as a result of high NH3 loading. The biofilter was operated for 4 months with alternating load ing of NH3 and CH3OH.  相似文献   

19.
During the last 50 years nitrate concentrations in Buttermere and Wastwater (Cumbria, UK) have risen significantly, by 70 and 100%, respectively. By estimating contemporary nitrate fluxes in the lakes' catchments and in sub-catchments and comparing them with the fractional areas of different soil types, it is deduced that the surface water nitrate is derived almost entirely from organic-rich ranker soils that have a limited ability to retain atmospherically-deposited nitrogen. Little or no nitrate leaches from the other major soil type, a brown podzol, despite it having a lower C:N ratio (12.0 g g(-1)) than the ranker (17.0 g g(-1)), nor is there much contribution from the small areas of improved (chemically fertilised) grassland within the catchments. Although some nitrate leaching is occurring, total N losses are appreciably smaller than atmospheric inputs, so the catchment soils are currently accumulating between 3 and 4 g N m(-2) a(-1).  相似文献   

20.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号