首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The objective of this study was to identify the main controls on atrazine leaching through luvisols and calcisols overlying fissured limestone using the dual-permeability model MACRO. The model parameterisation was based on a combination of direct measurements (e.g. hydraulic properties, adsorption and degradation), literature data and calibration against bromide leaching experiments in field plots. A Monte Carlo sensitivity analysis was carried out for a typical application pattern, considering two different depths of unsaturated limestone (15 and 30 m). MACRO calibrations to the field experiments demonstrated the occurrence of strong macropore flow in the luvisol, while transport in the calcisol could be described by the advection-dispersion equation. MACRO simulations of tritium and atrazine leaching qualitatively matched tritium concentration profiles measured in the limestone and atrazine concentrations measured in piezometers and in aquifer discharge via a spring. The sensitivity analysis suggested that the thickness of the limestone, as well as the transport properties and processes occurring in the unsaturated rock (e.g. matrix vs. fissure flow) will have little significant long-term effect on atrazine leaching, mainly because degradation is very slow in the limestone. No mineralization of atrazine was detected in one-year incubations and a mean half-life of 10 years was assumed in the simulations. Instead, processes occurring in the soil exerted the main control on predicted atrazine leaching, especially variations in the degradation rate and the strength of sorption and macropore flow. However, fissure flow in unsaturated rock is expected to exert a much more significant control on groundwater contamination for compounds that degrade more readily in the deep vadose zone.  相似文献   

2.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

3.
Speciation and mobility of cadmium in straw and wood combustion fly ash   总被引:3,自引:0,他引:3  
Two fly ashes from biomass combustion have been analysed regarding cadmium speciation and mobility. A fly ash from straw combustion contained 10 mg Cd/kg dry matter, and around 50% of the cadmium was leachable in water. The possible main speciation of cadmium in this fly ash was CdCl2. When adding this fly ash to agricultural soil a threat for groundwater contamination and plant uptake is existing. A fly ash from wood chip combustion had 28.6 mg Cd/kg dry matter. In this fly ash, the cadmium was bound more heavily, with only small amounts of cadmium leached in mild extractants. A possible speciation of cadmium in this fly ash was as oxide or as CdSiO3. Long-term effects and accumulation of cadmium could be a problem when adding this fly ash to agricultural or forest soils.  相似文献   

4.
A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.  相似文献   

5.
Viard B  Pihan F  Promeyrat S  Pihan JC 《Chemosphere》2004,55(10):1349-1359
To assess the contamination induced by traffic at the vicinity of a highway (A31, France), several complementary studies were carried out on two sites, with different profiles and traffic intensity. Concentrations of zinc, lead and cadmium were measured by atomic absorption spectrophotometry in deposits, roadside soil and autochthonous plants (Graminaceae) gathered at the vicinity of the highway (1-320 m), and in the viscera of snails Helix aspersa, transferred as sentinel in the sites. According to the results obtained for different compartments, the highway induces a contamination on the surrounding environment, up to 320 m, but with the maximum contamination observed between 5 and 20 m: the concentrations measured in plants at the vicinity of the highway were 2.1 mg Pb kg(-1) DW, 0.06 mg Cd kg(-1) DW, 62 mg Zn kg(-1) DW and the concentrations measured in snails were 21.3 mg Pb kg(-1) DW, 5.7 mg Cd kg(-1) DW, 510.8 mg Zn kg(-1) DW. The levels measured decreased with increasing distance from the highway. Results of the three metals studied indicated that lead seems to be the best metal to evaluate road transport contamination.  相似文献   

6.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   


7.
The effect of cadmium on C and N mineralization in sewage sludge amended and unamended sandy loam, loam and clay loam soils was studied during 2 months incubation at 30+/-1 degrees C. The sludge amendment caused 15-39% increase in microbial respiration, with the maximum C mineralization in sandy loam and the minimum in loam soil. The addition of 10 microg Cd g(-1) soil had no remarkable effect on C and N mineralization and microbial biomass; whereas significant decreases in the above parameters were observed at 25 and 50 microg Cd g(-1) soil, irrespective of the sludge addition. Less NO3(-)-N accumulated at higher Cd concentration. Cd recovery was high in sandy loam and low in clay loam soil. DTPA extractable Cd exhibited a significant negative correlation with microbial biomass (r=-0.58* to -0.86*; p < 0.05).  相似文献   

8.
A greenhouse trial investigated the uptake of cadmium and zinc by the bird-cherry oat aphid (Rhopalosiphum padi) feeding on wheat grown on sewage sludge amended soil. The trial was conducted at application rates of 0, 5, 7.5, 10, 15 and 20 tonnes ha(-1) dry solids. Concentrations of Cd and Zn were within current UK limits for potentially toxic elements in soils amended with sewage sludge. Cd and Zn in wheat plants were significantly greater than controls. Batches of aphids feeding on the wheat also showed a significant increase in the uptake of Cd and Zn. This study demonstrates a potential route of exposure to Cd and Zn for the predators of cereal aphids.  相似文献   

9.
The aim of the study was to establish whether the repeated application of sewage sludge to an acid forest soil (Dystric Cambisol) would lead to short-term groundwater contamination. Sludge was applied at four loading rates (0, 2.4, 17 and 60 Mg ha−1) in two consecutive years and leachates were analysed. Heavy metal inputs to soils at the lowest dose were below EC regulations but, at higher doses, limits for Zn, Cd, Cr and Ni were exceeded. Repeated application of sludge at 60 Mg ha−1 resulted in significantly (P < 0.05) higher concentrations of Zn, Cd, Cr and Ni in the leachates than with other treatments. The drinking water standards for Cd and Ni were surpassed in all treatments. Control plots were contaminated by groundwater flow despite the existence of buffer zones between plots. This complicated interpretation of the results, highlighting the importance of careful design of this type of experiment.  相似文献   

10.
Rice is a staple food by an increasing number of people in China. As more issues have arisen in China due to rice contaminated by cadmium (Cd), Cd contamination in arable soils has become a severe problem. In China, many studies have examined Cd contamination in arable soils on a national scale, but little studies have focused on the distribution of Cd in paddy fields. This study explored the spatial pattern of Cd in paddy soils in China, made a preliminary evaluation of the potential risk, and identified the most critically contaminated regions based on the domestic rough rice trade flow. The results showed that Cd concentrations in paddy soils in China ranged from 0.01 to 5.50 mg/kg, with a median value of 0.23 mg/kg. On average, the highest Cd concentrations were in Hunan (0.73 mg/kg), Guangxi (0.70 mg/kg), and Sichuan (0.46 mg/kg) provinces. Cd concentrations in paddy soils in central and western regions were higher than those in eastern regions, especially the southeastern coastal regions. Of the administrative regions, Cd standard exceedance rate was 33.2 %, and the heavy pollution rate was 8.6 %. Regarding to Cd of paddy soil, soil environmental quality was better in Northeast China Plain than in Yangtze River Basin and southeastern coastal region. Mining activities were the main anthropogenic pollution source of Cd in Chinese paddy soil. Based on rice trade, more of the Chinese population would be exposed to Cd through intake of rice produced in Hunan province. Certain regions that output rice, especially Hunan province, should be given priority in the management and control of Cd contamination in paddy soil.  相似文献   

11.
Grain Cd concentrations were determined in wheat (Triticum aestivum L.) grown in 1999, 2001 and 2003, at six sludge cake field experiments. Three of these sites also had comparisons with Cd availability from metal amended liquid sludge and metal salts. Grain Cd concentrations in all years and at all sites were significantly linearly correlated with NH4NO3 extractable Cd and soil total Cd (P<0.001). Soil extractability was greater in the liquid sludge and metal salt experiments than in the cake experiments, as were grain Cd concentrations. Across all the sites, NH4NO3 extractable soil Cd was no better at predicting grain Cd than soil total Cd. Stepwise multiple linear regression analysis showed that soil total Cd, pH and organic carbon were the only significant (P<0.001) variables influencing wheat grain Cd concentrations, explaining 78% of the variance across all field experiments (1408 plots). This regression predicted that the current UK soil total Cd limit of 3 mg kg(-1) was not sufficiently protective against producing grain above the European Union (EU) grain Cd Maximum Permissible Concentration (MPC) of 0.235 mg Cd kg(-1) dry weight, unless the soil pH was > 6.8. Our predictions show that grain would be below the MPC with > 95% confidence with the proposed new EU draft regulations permitting maximum total Cd concentrations in soils receiving sludge of 0.5 mg kg(-1) for soils of pH 5-6, 1 mg kg(-1) for soils of pH 6-7, and 1.5 mg kg(-1) for soils of pH > or = 7.  相似文献   

12.
This study investigated the biodegradation of the phthalate esters (PAEs) di-n-butyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) in sludge and sludge-amended soil. DBP (100 mg kg(-1)) and DEHP (100 mg kg(-1)) were added to sewage sludge, which was subsequently added to soil. The results showed that sewage sludge can degrade PAEs and the addition of sewage sludge to soil enhanced PAE degradation. Sludge samples were separated into fractions with various particle size ranges, which spanned 0.1-0.45 μm to 500-2000 μm. The sludge fractions with smaller particle sizes demonstrated higher PAE degradation rates. However, when the different sludge fractions were added to soil, particle size had no significant effect on the rate of PAE degradation. The results from this study showed that microbial strains F4 (Rhodococcus sp.) and F8 (Microbacterium sp.) were constantly dominant in the mixtures of soil and sludge.  相似文献   

13.
This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents.  相似文献   

14.
Sewage sludge addition to agricultural lands requires judicious management to avoid environmental risks arising from heavy metal and nitrate contamination of surface water and accumulation in edible plants. A field study was conducted on a silty-loam soil of 10% slope at Kentucky State University Research Farm. Eighteen plots of 22 x 3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge and yard waste compost mix (SS-YW) at 15 t acre(-1), six plots were mixed with sewage sludge (SS) at 15 t acre(-1), and six unamended plots that never received sludge were used for comparison purposes. Plots were planted with eggplant, Solanum melongena L. as the test plant. The objectives of this investigation were to: 1) assess the effect of soil amendments on the transport of NO3, NH4, and heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) into surface water; 2) investigate the effect of soil amendments on heavy metal bioavailability in eggplant fruits at harvest; and 3) assess chemical and physical properties of soil following addition of soil amendments and their impact on the yield and quality of eggplant fruit. SS-YW treatments reduced runoff water by 63% while plots incorporated with sewage sludge alone reduced runoff water by 37% compared to control treatment. The SS-YW treatments transported more mineral nitrogen (NO3-N and NH4-N) in runoff water than SS treatments. Total marketable yield (lbs acre(-1)) and number of eggplant fruits were greatest in SS-YW treatments. This response may be due to improved soil porosity, water, and nutrient retention of the soil amended with SS-YW mixture. Concentrations of heavy metals in soil amended with sludge were below the U.S. Environmental Protection Agency (USEPA) limits. Chromium, Ni, Zn, and Cu were taken up by eggplant fruits but their concentrations were below the Codex Commission allowable levels.  相似文献   

15.
Cadmium effects on the supra- and subpharyngeal ganglia, neurosecretion and RNA content in the neurosecretory cells were tested in earthworms Dendrobaena veneta exposed to 10 and 50 mg Cd kg(-1) in soil after 20 days of the experiment. Accumulation of cadmium in the ganglia of nervous system was also measured using AAS method. Cadmium was accumulated in the nervous system. The accumulated amount was proportional to Cd soil concentration and the exposure time. A considerable fall in neurosecretion and RNA content in the neurosecretory cells and neurosecretion in the neuropile (the axons) of both tested ganglia was induced by 50 mg Cd kg(-1). It seemed that neurosecretion synthesis and its axonal transport could be suppressed. Cadmium caused degenerative changes as vacuolization of the neurosecretory cells and neuropile in both tested ganglia.  相似文献   

16.
Cadmium effects on the ovary structure and oocytes were tested in earthworms Dendrobaena veneta exposed to 10 and 50 mg Cd kg(-1) in soil after 10 and 20 days of the experiment. In both experimental doses cadmium caused damage to the structure of the ovary but the effects were different in each group. At 10 mg Cd kg(-1) concentration in soil, young stages of oocytes and trophocytes were most sensitive to cadmium deleterious effects whereas somatic cells in the ovarian stroma were only slightly affected. Cadmium. at a concentration of 50 mg Cd kg(-1) in soil caused most damage in the somatic cells leading to the occurrence of unnaturally swollen elements and desmosomes destruction. At both experimental concentrations cadmium induced degenerative changes in cell nuclei and an increase in number of cell organelles (RER and Golgi complex elements) in the cytoplasm of oocytes and trophocytes. These also proved to be more active. No ultrastructural changes were manifested in oogonia. In both experimental groups degenerative changes occurred as early as after 10 days of Cd exposure.  相似文献   

17.
Linear alkylbenzene sulphonate (LAS) is used at a rate of approximately 430,000 tons/y in Western Europe, mainly in laundry detergents. It is present in sewage sludge (70-5,600 mg/kg; 5-95th percentile) because of its high usage per capita, its sorption and precipitation in primary settlers, and its lack of degradation in anaerobic digesters. Immediately after amendment, calculated and measured concentrations are <1 to 60 mg LAS/kg soil. LAS biodegrades rapidly in soil with primary and ultimate half-lives of up to 7 and 30 days, respectively. Calculated residual concentrations after the averaging time (30 days) are 0.24-18 mg LAS/kg soil. The long-term ecotoxicity to soil microbiota is relatively low (EC10 >or=26 mg sludge-associated LAS/kg soil). An extensive review of the invertebrate and plant ecotoxicological data, combined with a probabilistic assessment approach, led to a PNEC value of 35 mg LAS/kg soil, i.e. the 5th percentile (HC5) of the species sensitivity distribution (lognormal distribution of the EC10 and NOEC values). Risk ratios were identified to fall within a range of 0.01 (median LAS concentration in sludge) to 0.1 (95th percentile) and always below 0.5 (maximum LAS concentration measured in sludge) according to various scenarios covering different factors such as local sewage influent concentration, water hardness, and sewage sludge stabilisation process. Based on the present information, it can be concluded that LAS does not represent an ecological risk in Western Europe when applied via normal sludge amendment to agricultural soil.  相似文献   

18.
Dai J  Xu M  Chen J  Yang X  Ke Z 《Chemosphere》2007,66(2):353-361
In order to better understand land application of sewage sludge, the characterization of heavy metals, PCDD/F and PAHs in sewage sludge was investigated from six different wastewater treatment plants (WWTP) in Beijing City, China. It was found that the total concentrations of Zn in Wujiacun (WJC) sewage sludge, and Cd and Hg in sewage sludge generated from all of the six different places are higher than Chinese regulation limit of pollutants for sludge to be used for agriculture (GB18918-2002). The levels of 16 PAHs that have been categorized as priority pollutants by US EPA in the sewage sludge samples varied from 2467 to 25923 microg/kg (dry weight), the highest values of 25923 microg/kg being found in WJC WWTP. The concentrations of Benzo[a]pyrene were as high as 6.1mg/kg dry weight in WJC sewage sludge, exceeding the maximum permitted content by GB18918-2002. Individual PAH content varies considerably with sewage samples. The ratios of anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indene[1,2,3-cd]pyrene to indene[1,2,3-cd]pyrene plus benzo[g,h,i]perylene (In/In+BP), and fluoranthene to fluoranthene plus pyrene (Fl/Fl+Py) suggest that petroleum and combustion of fossil fuel were the dominant contributions for the PAHs in sewage sludge. The concentrations of total PCDD/F in the sewage sludge ranged from 330 to 4245 pg/g d.w. The toxicity equivalent concentrations is between 3.47-88.24 pg I-TEQ according to NATO/CCMS, which is below Chinese legislation limit value proposed for land application. The PCDD/F congener/homologue profiles found in the Beijing samples indicated that the high chlorinated PCDD/F contamination might originate mainly from PCP-related source and depositional sources while the low chlorinated PCDD/F homologues could be originating from incineration or coal combustion. The major source of PCDD/Fs in Beijing sludge is still unclear.  相似文献   

19.
Luo Y  Qiao X  Song J  Christie P  Wong M 《Chemosphere》2003,52(9):1483-1488
This paper described a multi-layer column device constructed with six cylindrical polythene tubes with installation of Rhizon soil moisture samplers (Rhizon SMS). The feasibility of using the column device to collect soil solution and percolate and to monitor leachability of nitrate in two sludge-amended soils was evaluated under glasshouse conditions. The soil moisture sampler in the device was demonstrated to be a non-destructive, simultaneous, sequential, convenient and rapid sampling tool for multiple-site porewater extraction. The device provided an in situ monitoring technique for leachability of nitrate in a soil profile following application of the anaerobically digested sewage sludge. The monitored results showed that surface soil amendment of the sewage sludge increased markedly the concentration of nitrate in the soil solutions at depths of 10-30 cm in a neutral paddy soil and at 30-50 cm in an acid red paddy soil. This amendment also largely increased nitrate in the percolates of the acid red soil. The movement and distribution patterns of nitrate in the profile were related to soil types, profile depths and experimental periods. Land application of sewage sludge may pose a risk in groundwater contamination of nitrate.  相似文献   

20.
When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号