首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ability of Turkish illitic clay (TIC) in removal of Cd(II) and Pb(II) ions from aqueous solutions has been examined in a batch adsorption process with respect to several experimental conditions including initial solution pH, contact time, initial metal ions concentration, temperature, ionic strength, and TIC concentration, etc. The characterization of TIC was performed by using FTIR, XRD and XRF techniques. The maximum uptake of Cd(II) (11.25 mg g−1) and Pb(II) (238.98 mg g−1) was observed when used 1.0 g L−1 of TIC suspension, 50 mg L−1 of initial Cd(II) and 250 mg L−1 of initial Pb(II) concentration at initial pH 4.0 and contact time of 240 min at room temperature. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin Radushkevich (D-R) isotherm models. The monolayer adsorption capacity of TIC was found to be 13.09 mg g−1 and 53.76 mg g−1 for Cd(II) and Pb(II) ions, respectively. The kinetics of the adsorption was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The results showed that the adsorption of Cd(II) and Pb(II) ions onto TIC proceeds according to the pseudo-second-order model. Thermodynamic parameters including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes indicated that the present adsorption process was feasible, spontaneous and endothermic in the temperature range of 5–40 °C.  相似文献   

2.
Cross-linked metal-imprinted chitosan microparticles were prepared from chitosan, using four metals (Cu(II), Zn(II), Ni(II), and Pb(II)) as templates, and epichlorohydrin as the cross-linker. The microparticles were characterized by Fourier transform infrared spectroscopy, solid state (13)C nuclear magnetic resonance spectroscopy, and energy-dispersive X-ray spectroscopy. They were used for comparative biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions in an aqueous solution. The results showed that the sorption capacities of Cu(II), Zn(II), Ni(II), and Pb(II) on the templated microparticles increased from 25 to 74%, 13 to 46%, 41 to 57%, and 12 to 43%, respectively, as compared to the microparticles without metal ion templates. The dynamic study showed that the sorption process followed the second-order kinetic equation. Three sorption models, Langmuir, Freundlich, and Dubinin-Radushkevich, were applied to the equilibrium isotherm data. The result showed that the Langmuir isotherm equation best fitted for monolayer sorption processes. Furthermore, the microparticles can be regenerated and reused for the metal removal.  相似文献   

3.
The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.  相似文献   

4.
A literature survey on liquid-phase adsorption of selected heavy metals including Cu(II), Zn(II), Ni(II), Cd(II), Pb(II), Hg(II), and Cr(VI) on chitosan (CTS) and its derivatives was made from the viewpoint of adsorption capacity. This parameter was obtained from the Langmuir fit of isotherm data. The magnitude of adsorption capacity of heavy metals on pristine CTS was also used to discuss the mechanism of adsorption; that is, how many amino groups in CTS chains would coordinate with one heavy metal ion. Furthermore, a newly defined parameter, the approaching equilibrium factor RL, was proposed to quantitatively indicate the favorability of the related adsorption process and to judge the correctness of adsorption capacity determined by the Langmuir equation.  相似文献   

5.
Removal of Pb(II) from wastewater using wheat bran   总被引:5,自引:0,他引:5  
The adsorption of Pb(II) ions from aqueous solutions on wheat bran (WB) has been investigated as a function of initial concentration, adsorbent dose, adsorbent particle size, agitation speed, temperature, contact time and pH of solution. The equilibrium process was described well by the Langmuir isotherm model with maximum sorption capacities of 69.0, 80.7 and 87.0 mgg(-1) of Pb(II) on wheat bran at 20, 40 and 60 degrees C, respectively. Thermodynamic parameters, i.e. DeltaG(0), DeltaH(0) and DeltaS(0) have also been calculated for the system and the sorption process was found to be endothermic. Good correlation coefficients were obtained for the pseudo second-order kinetic model. The metal ion could be stripped by addition of 0.5M HCl, making the adsorbent regeneration and its reutilization possible.  相似文献   

6.
This study investigated the removal of Pb(II) from aqueous solutions by a maize (Zea mays) stalk sponge. Equilibrium and kinetic models for Pb(II) sorption were developed by considering the effect of the contact time and concentration at the optimum pH of 6 ± 0.2. The Freundlich model was found to describe the sorption energetics of Pb(II) by Z. mays stalk sponge, and a maximum Pb(II) loading capacity of 80 mg g?1 was determined. The kinetic parameters were obtained by fitting data from experiments measuring the effect of contact time on adsorption capacity into pseudo-first and second-order equations. The kinetics of Pb(II) sorption onto Z. mays biosorbent were well defined using linearity coefficients (R2) by the pseudo-second-order equation (0.9998). The results obtained showed that Zea may stalk sponge was a useful biomaterial for Pb(II) sorption and that pH has an important effect on metal biosorption capacity.  相似文献   

7.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   

8.
Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures.As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g?1 for copper(II) and from 23.74 to 26.27 for lead(II).Activation energy was higher for lead(II) (22.40 kJ mol?1) than for copper(II) (20.36 kJ mol?1). The free energy of activation was higher for lead(II) than for copper(II) and the values of ΔH* and ΔS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption.Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin–Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism.  相似文献   

9.
In recent years, the adsorption of heavy metal cations onto bacterial surfaces has been studied extensively. This paper reports the findings of a study conducted on the heavy metal ions found in mine effluents from a mining plant where Co2+ and Ni2+ bearing minerals are processed. Heavy metal ions are reported to be occasionally present in these mine effluents, and the proposed microbial sorption technique offers an acceptable solution for the removal of these heavy metals. The sorption affinity of microorganisms for metal ions can be used to select a suitable microbial sorbent for any particular bioremediation process. Interactions of heavy metal ions (Co2+ and Ni2+) and light metal ions (Mg2+ and Ca2+) with indigenous microbial cells (Brevundimonas spp., Bacillaceae bacteria and Pseudomonas aeruginosa) were investigated using the Langmuir adsorption isotherm, pseudo second-order reaction kinetics model and a binary-metal system. Equilibrium constants and adsorption capacities derived from these models allowed delineation of the effect of binding affinity and metal concentration ratios on the overall adsorption behaviour of microbial sorbents, as well as prediction of performance in bioremediation systems. Although microbial sorbents used in this study preferentially bind to heavy metal ions, it was observed that higher concentrations (>90 mg/?) of light metal ions in multi-metal solutions inhibit the adsorption of heavy metal ions to the bacterial cell wall. However, the microbial sorbents reduced Ni2+ levels in the mine-water used (93–100% Ni2+ removal) to below the maximum acceptable limit of 350 μg/?, established by the South African Bureau of Standards. Competition among metal ions for binding sites on the biomaterial surface can occur during the bioremediation process, but microbial sorption affinity for heavy metal ions can enhance their remediation in dilute (<5 mg/? heavy metal) wastewaters.  相似文献   

10.
The removal of heavy metals from plating factory wastewater with economical materials was investigated by the column method. Montmorillonite, kaolin, tobermorite, magnetite, silica gel and alumina were used as the economical adsorbents to wastewater containing Cd(II), Cr(VI), Cu(II) and Pb(II). This removal method of heavy metals proved highly effective as removal efficiency tended to increase with increasing pH and decrease with increasing metal concentration. The removal percentages by adsorption onto montmorillonite, tobermorite, magnetite, and silica gel showed high values for all metals. From the results for the heat of adsorption, the adsorption process in the present study might be chemisorption. The proposed method was successfully applied to the removal of Cd(II), Cr(VI) and Cu(II) in rinsing wastewater from plating factory in Nagoya City, Aichi Prefecture, Japan. Since the economical adsorbents used can be obtained commercially because they are easily synthesized, the wastewater treatment system developed is rapid, simple and cheap for the removal of heavy metals.  相似文献   

11.
The use of low-cost adsorbents was investigated as a replacement for current costly methods of removing metals from aqueous solution. Removal of copper (II) from aqueous solution by different adsorbents such as shells of lentil (LS), wheat (WS), and rice (RS) was investigated. The equilibrium adsorption level was determined as a function of the solution pH, temperature, contact time, initial adsorbate concentration and adsorbent doses. Adsorption isotherms of Cu (II) on adsorbents were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. The maximum adsorption capacities for Cu (II) on LS, WS and RS adsorbents at 293, 313 and 333 K temperature were found to be 8.977, 9.510, and 9.588; 7.391, 16.077, and 17.422; 1.854, 2.314, and 2.954 mg g(-1), respectively. The thermodynamic parameters such as free energy (delta G0), enthalpy (delta H0) and entropy changes (delta S0) for the adsorption of Cu (II) were computed to predict the nature of adsorption process. The kinetics and the factors controlling the adsorption process were also studied. Locally available adsorbents were found to be low-cost and promising for the removal of Cu (II) from aqueous solution.  相似文献   

12.
In the present work, the adsorption capacity of anthill was investigated as a low‐cost adsorbent to remove the heavy metal ions, lead (II) ion (Pb2+), and zinc (II) ion (Zn2+) from an aqueous solution. The equilibrium adsorption isotherms of the heavy metal ions were investigated under batch process. For the study we examined the effect of the solution's pH and the initial cations concentrations on the adsorption process under a fixed contact time and temperature. The anthill sample was characterized using a scanning electron microscope (SEM), X‐ray fluorescence (XRF), and Fourier transform infrared (FTIR) techniques. From the SEM analysis, structural change in the adsorbent was a result of heavy metals adsorption. Based on the XRF analysis, the main composition of the anthill sample was silica (SiO2), alumina (Al2O3), and zirconia (ZrO2). The change in the peaks of the spectra before and after adsorption indicated that there was active participation of surface functional groups during the adsorption process. The experimental data obtained were analyzed using 2‐ and 3‐parameter isotherm models. The isotherm data fitted very well to the 3‐parameter Radke–Prausnitz model. It was noted that Pb2+ and Zn2+ can be effectively removed from aqueous solution using anthill as an adsorbent.  相似文献   

13.
Laboratory and field investigations have clearly demonstrated the important role of reduced iron (Fe(II)) in reductive transformations of first-row transition metal species. However, interactions of Fe(II) and copper (Cu) are not clearly understood. This study examined the reduction of Cu(II) by Fe(II) in stirred-batch experiments at pH 5.2 and 5.5 as influenced by chloride (Cl-) concentration (0.002-0.1 M), initial metal concentration (0.1-9.1 mM), and reaction time (1-60 min) under anoxic conditions. Reduction of Cu(II) to Cu(I) by dissolved Fe(II) was rapid under all experimental conditions and the stability of the products explains the driving force for the redox reaction. Under conditions of low [Cl-] and high initial metal concentration, >40% of total Cu and Fe were removed from solution after 1 min, which accompanied formation of a brownish-red precipitate. X-ray diffraction (XRD) patterns of the precipitates revealed the presence of cuprite (Cu2O), a Cu(I) mineral, based on d-spacings located at 0.248, 0.215, 0.151, and 0.129 nm. Fourier transform infrared (FTIR) spectroscopy corroborated XRD data for the presence of Cu2O, with features located at 518, 625, and 698 cm(-1). Increasing [Cl-] stabilized the dissolved Cu(I) product against Cu2O precipitation and resulted in more Fe precipitated from solution (relative to Cu) that appears to be present as poorly crystalline lepidocrocite (gamma-FeOOH). This process may be important in anoxic soil environments, where dissolved Fe(II) levels can accumulate.  相似文献   

14.
The toxicity and bioaccumulation of two heavy metals—lead (Pb) and cadmium (Cd)—in a semi-aquatic plant, Colocasia esculenta (L. Schott), from a synthetic heavy metal solution were studied. Young plants of equal size were grown hydroponically in shallow raceways containing Hoagland medium amended with 20, 40, and 60 mg l?1 of Pb and 2, 4, and 6 mg l?1 of Cd. The medium containing heavy metals was allowed to flow through the raceways with a change in influent heavy metal solution on every 5th day. The experiment was continued for 20 days. A set of control raceways—one comprised of nutrient medium with heavy metal supplements, devoid of plants, and another with the plants and nutrient medium having no metal supplement—was also simultaneously run. Chlorosis in the leaves was the prominent toxicity symptom observed due to Pb and Cd on the test plants. A significant decrease in the relative growth, biomass productivity, and total chlorophyll content were noticed in the plants with an increase in concentration of metal supplement in the solution and exposure time. Both metals accumulated to higher concentrations in the roots than in shoots, suggesting that the metals were bound to the root cells and their translocation to the leaves was limited. The results of the 20-day-long experiments indicate that from a phytoremediation perspective, C. esculenta is a promising plant species for remediation of wastewater polluted with lower concentrations of Pb and Cd.  相似文献   

15.
Adsorption of malachite green (MG) from aqueous solution onto treated ginger waste (TGW) was investigated by batch and column methods. The effect of various factors such as initial dye concentration, contact time, pH and temperature were studied. The maximum adsorption of MG was observed at pH 9. Langmuir and Freundlich isotherms were employed to describe the MG adsorption equilibrium. The monolayer adsorption capacities were found to be 84.03, 163.9 and 188.6 mg/g at 30, 40 and 50 °C, respectively. The values of thermodynamic parameters like ΔG°, ΔH° and ΔS° indicated that adsorption was spontaneous and endothermic in nature. The pseudo second order kinetic model fitted well in correlation to the experimental results. Rechienberg's equation was employed to determine the mechanism of adsorption. The results indicated that film diffusion was a major mode of adsorption. The breakthrough capacities were also investigated.  相似文献   

16.
The fly ash treated by H2SO4 was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy (ΔH0) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.  相似文献   

17.
The binding efficiency of chitosan samples for Ag(+), Cd(2+), Cu(2+), Pb(2+) and Zn(2+) has been evaluated in order to consider their application to remediate metal contaminated soil and water. The sorption behaviour of metal ions was assessed using a batch technique at different contact time and initial metal concentration with different background electrolytes. The kinetics followed a pseudo-second-order model, while the equilibrium data correlated well with the Freundlich and Langmuir isotherm models. For example, the maximum sorption capacity (Q) for chitosan was estimated as 1.93 mmol/g for Ag(+), 1.61 mmol/g for Cu(2+), 0.94 mmol/g for Zn(2+), 0.72 mmol/g for Cd(2+) and 0.64 mmol/g for Pb(2+). Covalent interaction between metal ions and functional groups (amino and hydroxyl) of the chitosans was the main binding mechanism. Ion exchange is not an important process. Chitosan and cross-linked chitosans were able to bind metal ions in the presence of K(+), Cl(-) and NO(3)(-). The nature of Cl(-) and NO(3)(-) ions did not affect Zn(2+) binding by the chitosans. Even at 11x dilution, the chitosans were able to retain metal ions on their surfaces.  相似文献   

18.
Adsorption of Pb and Cd in the presence and absence of organochlorine pesticides (OCPs) on natural surface coatings (NSCs), which were collected in the Nanhu Lake in Changchun, China, was measured in order to investigate the effect of the OCPs on the adsorption of heavy metals on the NSCs. Adsorption of Pb/Cd was carried out under controlled laboratory conditions (mineral salt solution with defined species, ionic strength 0.05 mol/l, 25 degrees C and pH 6.0) with initial Pb and Cd concentrations ranging from 0.2 to 2.5 mol/l. The classical Langmuir adsorption isotherm was applied to estimate the equilibrium coefficients of the adsorption of Pb and Cd on the NSCs. Adsorption interference between Pb/Cd and the OCPs on the NSCs indicated that the adsorption of Pb/Cd on the NSCs was influenced by the OCPs, and competitive adsorption between Pb and the OCPs was observed while adsorption of Cd was enhanced by addition of the OCPs. Adsorption data fit the Langmuir isotherm well for the NSCs treated with the OCPs at different equilibrium concentrations. The results showed that the amount of adsorbed Pb decreased by more than 40% while the amount of adsorbed Cd increased by over 60% with an increase in the initial concentrations of the OCPs ranging from 0 to 5.0 microg/l and that adsorption of Pb/Cd on the NSCs was strongly affected by the OCPs. This preliminary study highlights the importance of the OCPs on the NSCs in controlling the transport, fate, biogeochemistry, bioavailability and toxicity of trace metals in aquatic environments.  相似文献   

19.
The present study investigated the effectiveness of an inexpensive and ecofriendly alumino silicate clay mineral, sericitic pyrophyllite, as an adsorbent for the possible application in the removal of some divalent toxic metal cations such as Pb(2+), Cu(2+)and Zn(2+) from aqueous systems. Batch scale equilibrium adsorption studies were carried out for a wide range of initial concentration from 24.1 to 2410mumolL(-1) for lead, 78.65 to 7865mumolL(-1) for copper and 76.45 to 7645mumolL(-1) for zinc solutions. The removal of Pb(2+) was almost complete at low concentration (maximum lead removal capacity, LRC, 32mg of lead/g of pyrophyllite) with 10gL(-1) of adsorbent in a 30min equilibration time. The effects of temperature on adsorption of heavy metal ions were studied. The applicability of the Langmuir, Freundlich and Dubinin-Radushkevich adsorption models in each case of lead, copper and zinc adsorption was examined separately at different temperatures. The adsorption process was found to be endothermic and the Freundlich adsorption model was found to represent the data at different temperatures more suitably.  相似文献   

20.
Effects of impurities on the removal of heavy metals by natural limestones in aqueous solutions were studied by evaluating various factors including limestone concentration, pH, contact time and temperature. Solutions of Pb(II), Cd(II), Cu(II) and Zn(II), prepared from chloride reagents at a concentration of 10 mg/L, were studied in a batch method. Four natural limestone samples, collected from the Campanian-Maastrichtian limestone beds in Tunisia, were used as adsorbents. Sorption experiments indicated that high removal efficiencies could be achieved. Limestone samples containing impurities, such as silica, iron/aluminum oxides and different kinds of clay minerals, demonstrated enhanced sorption capacity, nearing 100% removal in some cases. Kinetic experiments showed that the sorption of metal ions occurred rapidly at a low coverage stage, and that solutions were nearly at equilibrium after 60 min. Data trends generally fit pseudo-second order kinetic, and intra-particle diffusion, models. The following conditions were found to promote optimum, or near-optimum, sorption of heavy metals: 1) contact time of more than 60 min, 2) pH = 5, 3) >3 g/L limestone concentration and 4) T = 35 °C. The results of this study suggest that the limestones from northern Tunisia, that contain higher amounts of silica and iron/aluminum oxides, are promising adsorbents for the effective removal of toxic heavy metals from wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号