首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Industrialization and urbanization in the developing world have boosted steel demand during the recent two decades. Reliable estimates on how much steel is required for high economic development are necessary to better understand the future challenges for employment, resource management, capacity planning, and climate change mitigation within the steel sector. During their use phase, steel-containing products provide service to people, and the size of the in-use stock of steel can serve as an indicator of the total service level. We apply dynamic material flow analysis to estimate in-use stocks of steel in about 200 countries and identify patterns of how stocks evolve over time. Three different models of the steel cycle are applied and a full uncertainty analysis is conducted to obtain reliable stock estimates for the period 1700–2008.Per capita in-use stocks in countries with a long industrial history, e.g., the U.S, the UK, or Germany, are between 11 and 16 tons, and stock accumulation is slowing down or has come to a halt. Stocks in countries that industrialized rather recently, such as South Korea or Portugal, are between 6 and 10 tons per capita and grow fast. In several countries, per capita in-use stocks of steel have saturated or are close to saturation. We identify the range of saturation to be 13 ± 2 tons for the total per capita stock, which includes 10 ± 2 tons for construction, 1.3 ± 0.5 tons for machinery, 1.5 ± 0.7 tons for transportation, and 0.6 ± 0.2 tons for appliances and containers. The time series for the stocks and the saturation levels can be used to estimate future steel production and scrap supply.  相似文献   

2.
The European Union has set ambitious objectives for the recovery rates of end-of life vehicles (ELVs). The directive 2000/53/CE (DIR, 2000) states that by 1st January 2015 at least 95% of the mass of an ELV must be reused and recovered, of which a maximum of 10% should be in the form of energy.In order to identify the key factors for improving the rate of material reuse, recycling and recovery of ELVs, ACYCLEA (PRAXY group) launched the “OPTIVAL VHU (ELV)” research program in collaboration with INSA Lyon in 2009. Three experimental campaigns were conducted on the industrial site of ACYCLEA to compare different scenarios of deconstruction. The campaigns were done on samples of 90 ELVs. The average mass (MELV) and age were estimated at 989 kg/ELV and 14 years, respectively. This article presents the results concerning the material balances of the successive operations. The contribution of each stage of the treatment (namely (i) depollution, (ii) deconstruction, and (iii) shredding and sorting operations) to the rate of recycling, reuse and recovery was calculated.Results showed firstly that the contribution of the operations of depollution was low (3.6 ± 0.1% of the mass of vehicles). The contribution of the operations of deconstruction was higher and increased logically with the degree of deconstruction. It ranged from 5% of MELV for the minimal level of deconstruction (campaign 1) to almost 10% with the highest level of deconstruction (campaign 3). The specific contribution of the operations of deconstruction to the rate of metal recycling was found to be quite low however, in the range of 2.6–2.8% of MELV, Shredding and post-shredding sorting operations enabled the recovery of the largest amounts of recyclable materials but no significant differences were observed between the overall recovery rates in the three campaigns (results ranged from 67 to 70% of MELV). Differences were observed however, for specific fractions such as the automotive shredder residues whose recovery rate was 16.3 ± 0.7%, 13.0 ± 0.5%, and 12.8 ± 0.2% for campaigns 1, 2 and 3, respectively. A larger production of non-ferromagnetic fraction was also observed in campaign 3, probably due to the extraction of the textiles during the dismantling operations which improved the efficiency of post-shredding sorting operations.The highest overall rate of reuse, recycling and energy recovery obtained in this study with the most rigorous approach was 81.5 ± 0.6% of the average mass of the ELV even with the highest level of deconstruction. It therefore appears that the European regulatory target of 95% would be difficult to achieve in 2015, except with a much greater optimization of the sorting technologies and the development of recycling processes.  相似文献   

3.
Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.  相似文献   

4.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

5.
6.
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 μGal for 2003 and 3.5 μGal for 2005. The resulting time-lapse uncertainty is 5.3 μGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530 kg/m3. Uncertainty in determining the average density is estimated to be ±65 kg/m3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.  相似文献   

7.
The occurrence of butyltin (BT) compounds in more than 50 recent sediment samples of the Iberian Peninsula, collected in the harbours of the western Mediterranean Sea (Spain) and the North Atlantic Ocean (Portugal), including domestic and industrial sewage disposal sites, has been assessed. The highest levels of tributyltin (TBT) (7673 μg kg?1 dry wt.) were detected in commercial harbours associated with inputs from large vessels. However, relatively high TBT values (about 2150 μg kg?1 dry wt.) were also detected in fishing and recreational boating areas. Spanish marinas and harbours are more polluted in terms of TBT (5–7673 μg kg?1 dry wt.) compared to those in Portugal (4–12 μg kg?1 dry wt.). Generally, the Mediterranean sediments show a BT distribution characterized by the predominance of TBT over the degradation products dibutyl (DBT) and monobutyltin (MBT), indicating the presence of recent inputs, in contrast to the Portuguese coastal distribution. Calculation of butyltin degradation indexes (BDI) confirmed a different trend, depending on the area. Furthermore, a comparative study of the occurrence of BT in different sewage sludge disposal sites shows that domestic primary sewage sludge effluents can contribute to coastal BT pollution, but to a lesser extent when compared with harbours. Historical trends (1995–2003) for Barcelona harbour reveal that BT regulations on the use of TBT-based antifouling paints have not been fully effective. Finally, a comparison against the existing sediment quality guidelines (SQGs) indicated that acute toxic effects could only be expected for TBT in some Mediterranean harbours; conversely, in every North Atlantic Ocean station, a lesser environmental threat for the harbour benthic community is expected.  相似文献   

8.
The objective of this work was to analyze the effect of the interaction between feeding strategy and COD/sulfate ratio on the removal efficiency of sulfate and organic matter from a synthetic wastewater. An anaerobic sequencing batch reactor with recirculation of the liquid phase and containing immobilized biomass on polyurethane foam (AnSBBR) was used. The AnSBBR with a total volume of 3.7 L, treated 2.0 L synthetic wastewater in 8-h cycles at 30 ± 1 °C and was inoculated with anaerobic biomass from a UASB. Two feeding strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. The COD/sulfate ratios assessed were 1 and 3. Based on these values and on the concentrations of organic matter (0.5–11.25 gCOD/L) and sulfate (0.5 and 2.5 gSO42?/L), the sulfate and organic matter loading rates applied equaled 1.5 and 4.5 gSO42?/L d for sulfate and 1.5, 4.5 and 13.5 gCOD/L d for organic matter. After stabilization of the system time profiles were run of monitored parameters (COD, sulfate, sulfide and sulfite). In general, the reactor showed to be robust for use in the anaerobic treatment of wastewaters containing sulfate. Gradual feeding (strategy b) of the carbon source favored sulfate reduction, resulting in sulfate removal efficiencies of 84–98% and organic matter removal efficiencies of 48–95%. The best results were observed under COD/sulfate ratio equal to 1 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 1.5 and 4.5 gCOD/L d for organic matter). When COD/sulfate ratio was 3 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 4.5 and 13.5 gCOD/L d for organic matter) the effect of feed mode became less significant. These results show that the strategy batch followed by fed-batch is more advantageous for COD/sulfate ratios near the stoichiometric value (0.67) and higher organic matter and sulfate concentrations.  相似文献   

9.
Reduction of carbon emissions from tropical deforestation and forest degradation is being considered a cost-effective way of mitigating the impacts of global warming. If such reductions are to be implemented, accurate and repeatable measurements of forest cover change and biomass will be required. In Papua New Guinea (PNG), which has one of the world's largest remaining areas of tropical forest, we used the best available data to estimate rainforest carbon stocks, and emissions from deforestation and degradation. We collated all available PNG field measurements which could be used to estimate carbon stocks in logged and unlogged forest. We extrapolated these plot-level estimates across the forested landscape using high-resolution forest mapping. We found the best estimate of forest carbon stocks contained in logged and unlogged forest in 2002 to be 4770 Mt (±13%). Our best estimate of gross forest carbon released through deforestation and degradation between 1972 and 2002 was 1178 Mt (±18%). By applying a long-term forest change model, we estimated that the carbon loss resulting from deforestation and degradation in 2001 was 53 Mt (±18%), rising from 24 Mt (±15%) in 1972. Forty-one percent of 2001 emissions resulted from logging, rising from 21% in 1972. Reducing emissions from logging is therefore a priority for PNG. The large uncertainty in our estimates of carbon stocks and fluxes is primarily due to the dearth of field measurements in both logged and unlogged forest, and the lack of PNG logging damage studies. Research priorities for PNG to increase the accuracy of forest carbon stock assessments are the collection of field measurements in unlogged forest and more spatially explicit logging damage studies.  相似文献   

10.
Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H2O2/g SS, 150 [H2O2]0/[Fe2+]0, 25 g/L TS, at 25 °C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 × 109 CFU ml?1 and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 × 108 CFU ml?1 with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.  相似文献   

11.
The formulation and scale-up of batch processes is one of the major challenges in the development of pharmaceutical dosage forms and at the same time a significant resource demanding process which is generally overlooked in environmental sustainability assessments. First, this paper proposes general trends in the experience curve of cumulative resource consumption of pharmaceutical tablet manufacturing of PREZISTA® 800 mg through wet granulation (WG) at four consecutive scales in both R&D and manufacturing environments (resp. WG1 = 1 kg/h, WG5 = 5 kg/h, WG30 = 30 kg/h and WG240 = 240 kg/h). Second, the authors aim at evaluating the environmental impact from a life cycle perspective of a daily consumption of PREZISTA® 2× 400 mg tablets versus the bioequivalent PREZISTA® 800 mg tablet which was launched to enhance patient compliance. Environmental sustainability assessment was conducted at three different system boundaries, which enables identification, localization and eventually reduction of burdens, in this case natural resource extraction. Exergy Analysis (EA) was used at process level (α) and plant level (β) while a cradle-to-gate Exergetic Life Cycle Assessment (ELCA) was conducted at the overall industrial level (γ) by means of the CEENE method (Cumulative Exergy Extraction from the Natural Environment). Life cycle stages taken into account are Active Pharmaceutical Ingredient (API) production, Drug Product (DP) production and Packaging. At process level (α), the total resource extraction for the manufacturing of one daily dose of PREZISTA® (800 mg tablet) amounted up to 0.44 MJex at the smallest scale (WG1) while this amount proved to be reduced by 58%, 79% and 83% at WG5, WG30 and WG240 respectively. Expanding the boundaries to the overall industrial level (γ) reveals that the main resource demand is at the production of the Active Pharmaceutical Ingredient (API), excipients, packaging materials and cleaning media used in DP production. At the largest scale (WG240) the use of cleaning media during DP production contributes considerably less to the total resource extraction. Overall, the effect of scale-up and learning on resource consumption during DP production showed to possess a power-law experience curve y = 2.40 * x−0.57 when shifting from WG1 (smallest lab scale) to WG240 (industrial manufacturing). Tablet dosage (2× 400 mg versus 1× 800 mg) did not significantly affect the absolute environmental burden. However, the relative contribution of resource categories did change due to the different production technology. It could be concluded that in meeting social and economic demands by launching the PREZISTA® 800 mg tablet, no trade-off in environmental burden occurred. On the long term, future research should strive to take into account R&D processes and all services related to pipeline activities taking place prior to market launch and eventually to allocate impacts to the final product.  相似文献   

12.
Concentrated, aqueous piperazine (PZ) is a novel solvent for carbon dioxide (CO2) capture by absorption/stripping. One of the major advantages of PZ is its resistance to thermal degradation and oxidation.At 135 and 150 °C, 8 m PZ is up to two orders of magnitude more resistant to thermal degradation than 7 m monoethanolamine (MEA). After 18 weeks at 150 °C, only 6.3% of the initial PZ was degraded, yielding an apparent first order rate constant for amine loss of 6.1 × 10?9 s?1. PZ was the most resistant amine tested, with the other screened amines shown in order of decreasing resistance: 7 m 2-amino-2-methyl-1-propanol, 7 m Diglycolamine®, 7 m N-(2-hydroxyethyl)piperazine, 7 m MEA, 8 m ethylenediamine, and 7 m diethylenetriamine. Thermal resistance allows the use of higher temperatures and pressures in the stripper, potentially leading to overall energy savings.Concentrated PZ solutions demonstrate resistance to oxidation compared to 7 m MEA solutions. Experiments investigating metal-catalyzed oxidation found that PZ solutions were 3–5 times more resistant to oxidation than MEA. Catalysts tested were 1.0 mM iron (II), 4.0–5.0 mM copper (II), and a combination of stainless steel metals (iron (II), nickel (II), and chromium (III)). Inhibitor A reduced PZ degradation catalyzed by iron (II) and copper (II).  相似文献   

13.
This work presents results from a rate-based model of strippers at normal pressure (160 kPa) and vacuum (30 kPa) in Aspen Custom Modeler® (ACM) for the desorption of CO2 from 5 m K+/2.5 m piperazine (PZ). The model solves the material, equilibrium, summation and enthalpy (MESH) equations, the heat and mass transfer rate equations, and computes the reboiler duty and equivalent work for the stripping process. Simulations were performed with IMTP #40 random packing and a temperature approach on the hot side of the cross-exchanger of 5 °C and 10 °C. A “short and fat” stripper requires 7–15% less total equivalent work than a “tall and skinny” one because of the reduced pressure drop. The vacuum and normal pressure strippers require 230 s and 115 s of liquid retention time to get an equivalent work 4% greater than the minimum work. Stripping at 30 kPa was controlled by mass transfer with reaction in the boundary layer and diffusion of reactants and products (88% resistance at the rich end and 71% resistance at the lean end). Stripping at 160 kPa was controlled by mass transfer with equilibrium reactions (84% resistance at the rich end and 74% resistance at the lean end) at 80% flood. The typical predicted energy requirement for stripping and compression to 10 MPa to achieve 90% CO2 removal was 37 kJ/gmol CO2. This is about 25% of the net output of a 500 MW power plant with 90% CO2 removal.  相似文献   

14.
The subsidence caused by coal mining in areas where cropland and coal resources overlap in the eastern plains of China with high ground water levels has caused large amounts of water to collect in cropland, significant damage to cropland, and a sharp contradiction between people and land distribution within this region. Systematic analysis and calculation were conducted on these areas by using GIS spatial overlay analysis technology, subsidence and occupied cropland estimation models, and crop yield reduction prediction model to reveal the overlapped characteristics and extent of farmland damage, as well as to evaluate the effects of farmland damage to grain yield, farmland landscape, agricultural population, and dynamical equilibrium of the total cultivated land. Results showed that the overlapped areas of cropland and coal resources on the eastern plains of China occupied an area covering 1.33 × 105 km2, which accounted for 31.93% of the total cropland area. In 2020, the accumulative total area of destroyed cropland reached 3.83 × 103 km2, thus reducing grain yield by 9.63 × 108 kg, and increasing the number of landless farmers to 1.91 × 106. Furthermore, the quality and production capacity of cultivated land decreased, farmland landscape patterns changed, land patterns and structures were adjusted, the dynamical equilibrium of the total cultivated land was difficult to guarantee, and social instability increased in coal mining subsidence areas. These findings provided a scientific basis for relevant government departments to enact countermeasures for the coordinative production of coal and grain.  相似文献   

15.
This investigation represents the first environmental diagnosis of the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from a tropical mangrove in Fortaleza, northeastern Brazil. Sediment cores from six sampling stations in the Cocó and Ceará Rivers were retrieved in June-July 2006 to determine 17 priority PAHs. The total PAH concentrations (ΣPAHs) ranged from 3.04 to 2234.76 μg kg?1(Cocó River) and from 3.34 to 1859.21 μg kg?1 (Ceará River). These levels are higher than those of other cities with more industrial development. PAH concentrations did not reach probable effect levels (PELs). However, from 4.5 to 87.5% of individual PAH concentrations can occasionally cause adverse biological effects for aquatic organisms. The PAH molecular ratios indicate that the PAHs in the sediment core were derived mainly from petroleum, wood, and charcoal combustion (pyrogenic source), and that atmospheric deposition and urban runoff may serve as important pathways for PAH input to the sediment. Clearly, the ΣPAHs in sediments collected in the Cocó and Ceará Rivers indicate that ongoing pollution is more severe than past pollution.  相似文献   

16.
Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is modeled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1).  相似文献   

17.
Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mg L?1 was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test.When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 A m?2, NaCl of 1000 mg L?1, and pH0 of 7. However, the decolorized solution showed high toxicity (100% light inhibition).For fly ash adsorption, a high dose of fly ash (>20,000 mg L?1) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well.In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mg L?1 fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.  相似文献   

18.
Concentrated, aqueous piperazine (PZ) has been investigated as a novel amine solvent for carbon dioxide (CO2) absorption. The CO2 absorption rate of aqueous PZ is more than double that of 7 m MEA and the amine volatility at 40 °C ranges from 11 to 21 ppm. Thermal degradation is negligible in concentrated, aqueous PZ up to a temperature of 150 °C, a significant advantage over MEA systems. Oxidation of concentrated, aqueous PZ is appreciable in the presence of copper (4 mM), but negligible in the presence of chromium (0.6 mM), nickel (0.25 mM), iron (0.25 mM), and vanadium (0.1 mM). Initial system modeling suggests that 8 m PZ will use 10–20% less energy than 7 m MEA. The fast mass transfer and low degradation rates suggest that concentrated, aqueous PZ has the potential to be a preferred solvent for CO2 capture.  相似文献   

19.
Amine volatility is a key screening criterion for amines to be used in CO2 capture. Excessive volatility may result in significant economic losses and environmental impact. It also dictates the capital cost of the water wash. This paper reports measured amine volatility in 7 m MEA (monoethanolamine), 8 m PZ (piperazine), 7 m MDEA (n-methyldiethanolamine)/2 m PZ (piperazine), 12 m EDA (ethylenediamine), and 5 m AMP (2-amino-2-methyl-1-propanol) at 40–60 °C with lean and rich loadings giving CO2 partial pressures of 0.5 and 5 kPa at 40 °C. The amine concentrations were chosen to maximize CO2 capture capacity at acceptable viscosity. At the lean loading condition (where volatility is of greatest interest), the amines are ranked in order of increasing volatility: 7 m MDEA/2 m PZ (6/2 ppm), 8 m PZ (8 ppm), 12 m EDA (9 ppm), 7 m MEA (31 ppm), and 5 m AMP (112 ppm). The apparent amine partial molar excess enthalpies in these systems were estimated to range from ~10 to 87 kJ/mol of amine.  相似文献   

20.
In this study the biosorption of Yellow RL, a metal-complex anionic dye, by dried Rhizopus arrhizus, a filamentous fungus, was investigated as a function of initial solution pH, initial dye concentration and initial salt (sodium chloride) concentration. The fungus exhibited the maximal dye uptake at pH 2 in the absence and in the presence of salt. Dye uptake increased with the dye concentration up to 1000 mg l?1 and diminished considerably in the presence of increasing concentrations of salt up to 50 g l?1. The fungus biosorbed 85.4 mg dye g?1of dried biomass at 100 mg l?1 initial dye concentration in the absence of salt. When 50 g l?1 salt was added to the biosorption medium, this value dropped to 60.8 mg g?1 resulting in 28.8% reduction in biosorption capacity. The Redlich–Peterson and Langmuir–Freundlich were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. The pseudo-second-order and saturation type kinetic models depicted the biosorption kinetics accurately for all cases studied. Equilibrium and kinetic constants varied with the level of salt were expressed as a function of salt concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号