首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands’ capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.  相似文献   

2.
Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as “vegetation carpet”, which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.  相似文献   

3.
The relationship between edaphic characteristics and vegetation growing on mine wastes in the Bor region (East Serbia, SE Europe) was studied using multivariate statistical analysis. The influence of edaphic factors on the composition of plant life-forms was also investigated, since it could reflect strategies for the avoidance of or tolerance to disturbances of ecosystems. The goal was to provide potential models for the restoration and management of this and similar mine waste areas. The results of this study imply that soil textures, nitrogen contents, reclamation technology and the presence of hydrothermally altered andesite as the type of bedrock significantly influenced plant colonization and vegetation composition of the Bor mine wastes. These edaphic factors explained 30.3 % of the total variation in the vegetation data set. It was also revealed that the pattern of plant life-forms found on the considered site groups corresponded to the soil texture. Based on their relative abundance on the investigated sites and relationships with soil properties it is concluded that therophytes and geophytes are unsuccessful primary colonizers of the Bor mine wastes. Hemicryptophytes of psammophytic character were the most successful primary colonizers and therefore potential candidates for anthropogenically-assisted natural recovery. This study suggested that an assessment of edaphic factors should be widely used in the characterization of mine wastes prior to reclamation. Estimation of their role in the development of existing mine vegetation should predate reclamation procedures. Thus, approaches based on adequate plant life-forms should have a more prominent role in future mine reclamation schemes.  相似文献   

4.
丛枝菌根在矿区生态重建中的应用及其前景分析   总被引:1,自引:0,他引:1  
目前国内外矿山复垦研究的新热点是应用现代微生物工艺技术加速新覆盖土的改性与熟化。在总结分析国内外微生物复垦技术研究现状的基础上,对丛枝菌根应用于矿区复垦的前景进行了展望。加快这项技术的应用研究,对拓宽我国科学复垦技术研究领域、提高土地复垦率具有重要意义。  相似文献   

5.
The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on (i) soil microbial community structure and (ii) the contribution of SOM derived from the original forest vegetation to the functioning of pasture and sugarcane (Saccharum spp.) ecosystems. We used principal components analysis (PCA) of soil phospholipid fatty acid (PLFA) profiles to evaluate microbial community structure and PLFA stable carbon isotope ratios (delta13C) as indicators of the delta13C of microbial substrates. Soil type mainly determined the relative proportions of gram positive versus gram negative bacteria whereas land use primarily determined the relative proportion of fungi, protozoa, and actinomycetes versus other types of microorganisms. Comparison of a simple model to our PLFA delta13C data from land use chronosequences indicates that forest-derived SOM is actively cycled for appreciably longer times in sugarcane ecosystems developed on Andisols (mean turnover time = 50 yr) than in sugarcane ecosystems developed on an Oxisol (mean turnover time = 13 yr). Our analyses indicate that soil chronosequence PLFA delta13C measurements can be useful indicators of the contribution that SOM derived from the original vegetation makes to continued ecosystem function under the new land use.  相似文献   

6.
Mammalian communities were studied on 10 surface mines over a four year period. The size and composition of these communities varied among the different areas. The size, composition, and spatial distribution of these mammalian communities were related to the structure of the plant community, and native plant species were of greater importance in determining size and composition of these communities than were those used in reclamation.  相似文献   

7.
ABSTRACT: A study was conducted over a six-year period in East-Central Ohio to determine the effects of surface mining and reclamation on physical watershed conditions and on ground-water hydrology in three ground-water zones in three small experimental watersheds. Mining disturbances in watersheds adjacent to the experimental sites affected ground-water levels in the undisturbed experimental watersheds prior to actual mining in the experimental sites. New subsurface flow paths, with different characteristics, formed during mining and reclamation. At all three sites mining dewatered the saturated zone above the underclay of the mined coal seam. Mining and reclamation affected ground-water levels below the mined coal seam in the middle and lower zones within at least two sites. Ground-water level recovery in the mined upper saturated zone was slow and irregular both temporally and spatially after reclamation. Hydraulic conductivities of postmining (Phase 3) spoil were generally greater than those of Phase 1 bedrock, but wide spatial variability was observed. Modelers need to be aware of the complexities of new flow paths and physical characteristics of subsurface flow media that are introduced by mining and reclamation, including destruction of the upper-zone clay.  相似文献   

8.
The USDA’s Conservation Reserve Program (CRP) has predominantly used only a few species of dominant prairie grasses (CP2 practice) to reduce soil erosion, but recently has offered a higher diversity planting practice (CP25) to increase grassland habitat quality. We quantified plant community composition in CP25 and CP2 plantings restored for 4 or 8 years and compared belowground properties and processes among restorations and continuously cultivated soils in southeastern Nebraska, USA. Relative to cultivated soils, restoration increased soil microbial biomass (P = 0.033), specifically fungi (P < 0.001), and restored soils exhibited higher rates of carbon (C) mineralization (P = 0.010). High and low diversity plantings had equally diverse plant communities; however, CP25 plantings had greater frequency of cool-season (C3) grasses (P = 0.007). Older (8 year) high diversity restorations contained lower microbial biomass (P = 0.026), arbuscular mycorrhizal fungi (AMF) biomass (P = 0.003), and C mineralization rates (P = 0.028) relative to 8 year low diversity restorations; older plantings had greater root biomass than 4 year plantings in all restorations (P = 0.001). Low diversity 8 year plantings contained wider root C:N ratios, and higher soil microbial biomass, microbial community richness, AMF biomass, and C mineralization rate relative to 4 year restorations (P < 0.050). Net N mineralization and nitrification rates were lower in 8 year than 4 year high diversity plantings (P = 0.005). We attributed changes in soil C and N pools and fluxes to increased AMF associated with C4 grasses in low diversity plantings. Thus, reduced recovery of AMF in high diversity plantings restricted restoration of belowground microbial diversity and microbially-mediated soil processes over time.  相似文献   

9.
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy.  相似文献   

10.
The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.  相似文献   

11.
Ecosystem responses to physical or chemical stress may vary from changes in single organisms to alteration of the structure and function of the ecosystem. These responses to stress cannol be predicted exactly. Ecosystems repeatedly exposed to physical and/or chemical stress can be used to study the separate and combined environmental effects of stress. Such studies also allow the development of procedures to select test systems for the analysis of stress in ecosystems. A preliminary field survey of six military training sites at Fort Riley, Kansas, USA, was conducted to identify and verify ecological test systems for evaluating ecosystem responses to physical and/or chemical stress. Comparisons of these data with data collected concurrently from Konza Prairie Research Natural Area reference sites showed that soil microarthropods, some species of macroarthropods, small mammals, and native earthworm species were negatively affected by stress. In contrast, plant species diversity, plant foliage biomass, soil mycorrhizae, and many soil characteristics were within the boundaries of nominal variations observed on “pristine” Konza Prairie. Introduced European earthworms appeared to be positively affected by training activities. This study provided a test of systematic procedures to support impact analysis, ecological toxicology, and ecosystem risk assessments. This is paper IX in D. J. Schaeffer's “Environmental Audit” series.  相似文献   

12.
Transgenic or genetically modified plants possess novel genes that impart beneficial characteristics such as herbicide resistance. One of the least understood areas in the environmental risk assessment of genetically modified crops is their impact on soil- and plant-associated microbial communities. The potential for interaction between transgenic plants and plant residues and the soil microbial community is not well understood. The recognition that these interactions could change microbial biodiversity and affect ecosystem functioning has initiated a limited number of studies in the area. At this time, studies have shown the possibility that transgenes can be transferred to native soil microorganisms through horizontal gene transfer, although there is not evidence of this occurring in the soil. Furthermore, novel proteins have been shown to be released from transgenic plants into the soil ecosystem, and their presence can influence the biodiversity of the microbial community by selectively stimulating the growth of organisms that can use them. Microbial diversity can be altered when associated with transgenic plants; however, these effects are both variable and transient. Soil- and plant-associated microbial communities are influenced not only by plant species and transgene insertion but also by environmental factors such as field site and sampling date. Minor alterations in the diversity of the microbial community could affect soil health and ecosystem functioning, and therefore, the impact that plant variety may have on the dynamics of the rhizosphere microbial populations and in turn plant growth and health and ecosystem sustainability, requires further study.  相似文献   

13.
Soil physicochemical characteristics, total aboveground biomass, number of species and relative abundance of groups and individual species were measured along a moisture gradient in a pasture, flooded in part during winter through early summer, adjacent to Pamvotis lake in Ioannina, Greece. Soil and vegetation measurements were conducted in 39 quadrats arranged in four zones perpendicular to the moisture gradient. The zone closest to the lake, recently separated from the lake, became part of the pasture and its soil texture was quite different from that of the other zones with a substrate containing 91% sand. Except for pH, this zone had the lowest values in the other five soil physicochemical characteristics measured (organic matter, total and extracted inorganic nitrogen, Olsen extracted phosphorus and extractable potassium); in the other zones organic matter, total nitrogen, phosphorus and potassium tended to increase from the driest to the wettest zone. Total aboveground biomass, ranging from 280 to 840 gm-2, is high for herbaceous pastures in the conditions of Mediterranean climate and it was not related to distance from the lake's shoreline, although the highest values were measured at intermediate distances, or to any of the various soil characteristics measured. Also, the number of species/0.25 m2 was not related to any of the various soil characteristics, but it was highest at the intermediate distances from the lake's shoreline. Species composition varied along the moisture gradient. Forbs as well as annual grasses and legumes declined in abundance from the driest to the wettest places; the reverse was the case for sedges and perennial grasses and legumes. These results indicate that the soil moisture gradient was the principal factor affecting soil characteristics and plant species composition. Since most species were recorded in all the four zones of the pasture, indicating that these can tolerate all variations in abiotic conditions of pasture, the vegetation zonation seems to be influenced by competition. Each functional group of species tends to dominate in a particular range of the soil moisture gradient where it is better suited and tends to exclude competitively other species. Management practices (mowing and grazing) affect the kinds of processes which maintain the observed community structure either by preventing the establishment of later successional species, like reeds and woody species, or by moderating the shoot competition, especially in the wetter zones, and thus permitting the creeping species to grow successfully.  相似文献   

14.
The Surface Mining Control and Reclamation Act of 1977 requires that coal mine sites in the United States be reclaimed to establish vegetative cover that is diverse, native, and capable of plant succession. However, there is a question as to whether vegetation established on coal mine sites reclaimed with biosolids is diverse and capable of plant succession. The influx of nutrients with the addition of biosolids leads to long-term dominance by early-successional species, most notably grasses, and consequently, a low establishment of woody and volunteer species. Additionally, many grass species commonly planted in reclamation have aggressive growth habits that lead to their dominance in coal mine plant communities. The establishment and growth of selected grass mixes was evaluated to determine whether alternative grass mixes would be less competitive with woody and volunteer species as compared to commonly used grass mixes. Percent vegetative cover, species richness, and the survival of direct-seeded woody species were assessed for each treatment grass mixture. It was found that Poa compressa and a mixture of P. compressa, Panicum virgatum, and Trifolium repens provided adequate coverage while still allowing the highest species richness and survival of woody species. Use of these species mixtures in coal mine reclamation with biosolids in the eastern United States would likely lead to establishment of a more species-rich plant community with a greater woody species component while still providing erosion control and site protection.  相似文献   

15.
To assess the recovery trajectory and self-maintenance of restored ecosystems, a successional gradient (1, 3, 5, 15, and 30 years after abandonment) was established in a sub-alpine meadow of the eastern Tibetan Plateau in China. Plant communities and soil carbon and nitrogen properties were investigated and analyzed. Regression analyses were used to assess the models (linear or quadratic) relating measures of species richness, soil carbon and nitrogen properties to fallow time. We found that species richness (S) increased over the first 20 years but decreased thereafter, and aboveground biomass showed a linear increase along the fallow time gradient. The richness of different functional groups (forb, grass and legume) changed little along the fallow time gradient, but their corresponding above ground biomass showed the U-shaped, humped or linear pattern. Soil microbial carbon (MBC) and nitrogen (MBN) in the upper 20 cm showed a U-shaped pattern along the fallow time gradient. However, soil organic carbon (Corg) and total nitrogen (TN) in the soil at depth greater than 20 cm showed significant patterns of linear decline along the fallow time gradient. The threshold models of species richness reflected best the recovery over the 15 year fallow period. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and strong rehabilitating capability under natural recovery condition.  相似文献   

16.
As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes.  相似文献   

17.
Sand dune quarries are a location of common aggregate mining activity developed in coastal areas, especially in the southeast Buenos Aires province, Argentina. In this article, spontaneous plant development after extraction activity ceased was evaluated. Five areas (three quarried and two natural/conservation areas) were sampled for plant cover and composition as well as sediment characterization. Different indexes, principal component analysis, and cluster analyses were applied to compare the areas. The dominant families observed in four of the five areas were Asteraceae, Poaceae, and Cyperaceae, and most of the species are commonly found in sandy and humid soils and/or modified/anthropized ones. Percentages of plant cover increased with time because of the cessation of active aggregate extraction. Indexes and multivariate analyses showed that it was possible to distinguish quarried and natural areas based on composition and vegetation cover. The distribution of plant species among the four areas responded to the presence of mining activity, but it also responded to the topographical position and consequently the depth of the groundwater level. Besides these differences, the four areas shared many native species. The results might indicate that once the activity has ceased, quarried areas may spontaneously and quickly develop a plant community with some similarities to those present in the nonquarried areas. However, given that the extracting activity involves the removal of the soil, revegetation of this type of environment depends on the presence of natural areas in the surroundings, which can serve as a source of seeds and propagules for plant regeneration.  相似文献   

18.
19.
The effects of pasture management, season and soil nutrient status on crude protein (CP) and macro mineral concentration of native pasture was studied in the Vertisol areas of the central Ethiopian highland. Soil and herbage samples from 18 continuously grazed (CG) and 12 seasonally grazed (SG) pasture sites were analyzed for N, P, Ca, Mg, K and Na. Soil and dry season CG pasture samples were collected in January and February 2001 (dry season: November-February), while wet season CG and SG pasture samples were collected during September 2001 (wet season: April-October). The Potassium concentration (2.55%) of mixed herbage samples from SG pasture exceeded the K values (1.80%) from CG pasture (P?相似文献   

20.
What is soil organic matter worth?   总被引:3,自引:0,他引:3  
The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号