首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

2.
ABSTRACT: Interpretation of ground water level changes in a developed aquifer usually relies on reference to some benchmark such as “predevelopment” ground water levels, changes from fall to fall and/or spring to spring, or to determination of maximum stress during the pumping season. The assumption is that ground water levels measured in the monitoring well accurately reflect the state of the ground water resource in terms of quantity in storage and the effects of local pumping. This assumption is questionable based on the patterns shown in continuous hydrographs of water levels in monitoring wells in Nebraska, and wells installed to determine vertical gradients. These hydrographs show clear evidence for vertical ground water gradients and recharge from overlying parts of the aquifer system to deeper zones in which production wells are screened. The classical concept of semi‐perched ground water, as described by Meinzer, is demonstrated by these hydrographs. The presence of semi‐perched ground water (Meinzer definition, there is no intervening unsaturated zone) invalidates the use of measured ground water levels in regional observation programs for detailed numerical management of the resource. Failure to recognize the Meinzer effect has led to faulty management. The best use of data from the observation well network would be for detection of trends and education unless it is clearly understood what is being measured.  相似文献   

3.
ABSTRACT: A Geographic Information System (GIS) was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. As mandated by state law, water-use data are reported by ground-water withdrawers annually to the Arkansas Soil and Water Conservation Commission, and stored in the Arkansas Site-Specific Water-Use Data System provided and supported by the U.S. Geological Survey. Although most withdrawers are able to provide the amount of water withdrawn and the depth of their wells, very few are able to provide the name of the aquifer from which they withdraw water. GIS software was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. The software was used to generate a spatial representation of the bottom boundary for the Mississippi River Valley alluvial aquifer (the shallowest aquifer) in eastern Arkansas from well log-data collected by the U.S. Geological Survey. The software was then used to determine the depth of the aquifer bottom at reported well locations to ascertain whether the Mississippi River Valley alluvial aquifer or a deeper aquifer was the primary aquifer providing water to each well. The alluvial aquifer was identified as the primary aquifer for about 23,500 wells.  相似文献   

4.
ABSTRACT: Injection of water and subsequent withdrawal were carried out in three existing water wells (SU-10, C-105, and SU-135A) in Kuwait. The objective of the study was to assess the technical feasibility of artificial recharge in the carbonate Dammam Formation and the clastic Kuwait Group aquifers. In the absence of any pretreatment of injection water and measures for maintenance of line pressure, clogging from suspended solids and air entrapment occurred in all three experiments. It was, however, possible to inject for one month in Wells SU-10 and C-105 where injection took place in the Dammam aquifer. In Well SU-135A, where the Kuwait Group aquifer was the target for injection, clogging became so severe that the injection experiment had to be abandoned. The injection/withdrawal data were analyzed with the help of a multi-aquifer flow model and a transport model. The models took into account the effects of crossflow within the boreholes on the distribution of intake and discharge rates for different aquifers, and hence, on the recovery efficiency. The experiments suggested that the artificial recharge of the Dammam and the Kuwait Group aquifers was technically feasible. The problem of clogging was, however, more severe for the Kuwait Group.  相似文献   

5.
ABSTRACT: Closely located domestic and public supply wells were sampled using identical sampling procedures to allow comparison of water quality associated with well type. Water samples from 15 pairs of wells with similar screened intervals completed in the central High Plains regional aquifer in parts of Kansas, Oklahoma, and Texas were analyzed for more than 200 water quality constituents. No statistically significant differences were observed between the concentrations of naturally‐derived constituents (major ions, trace elements, and radon) in paired wells. However, differences in water quality between paired wells were observed for selected anthropogenic compounds (pesticides and tritium), in that some public supply wells produced water that was more recently recharged and contained constituents derived from surface activities. The presence of recently recharged water and compounds indicative of anthropogenic activities in some public supply wells was likely due to operational variations (pumping rate and pumping cycles), as demonstrated in a particle tracking simulation. Water containing surface‐derived anthropogenic compounds from near the water table was more quickly drawn to high volume public supply wells (less than five years) than domestic wells (greater than 120 years) with small pumping rates. These findings indicate that water quality samples collected from different well types in the same area are not necessarily directly comparable. Sampling domestic wells provides the best broad‐scale assessment of water quality in this aquifer setting because they are less susceptible to localized contamination from near the water table. However, sampling public supply wells better represents the quality of the used resource because of the population served.  相似文献   

6.
ABSTRACT: This study analyzes possible causes of shallow ground water salinization in the coastal area of Yun‐Lin. The local hydro‐geologic setting is determined from geological drilling data and sea floor topography. Three possible causes (sea water intrusion, salt water percolation through wells, and infiltration of salty water from fish ponds) are evaluated. Chloride concentration is used as an index to measure ground water salinization. Sea water intrusion is modeled by the advective/dispersive equation, and salt water infiltration from wells and fish ponds is calculated by estimating the amount of water percolated. The determined local hydrogeologic setting suggests that the shallow aquifer may be connected to the sea water, resulting in salt water intrusion as a large amount of shallow ground water is withdrawn. The percent contributions of sea water intrusion, percolation through wells, and infiltration of water from fish ponds, to the salinization of the shallow aquifer at Ko‐Hu in the Yun‐Lin coastal area are approximately 27 percent, less than 1 percent and 73 percent, respectively. The results suggest that the vertical infiltration of salt water from fish ponds is the major cause of shallow ground water salinization in the coastal area of Yun‐Lin.  相似文献   

7.
ABSTRACT: Numerical models were used to examine the limitations of the assumptions used in an analytical induced infiltration model. The assumptions tested included negligible streambed effects, negligible areal recharge, two-dimensional ground water flow, fully penetrating rivers and wells, and constant surface water stage. For situations that deviate from the underlying assumptions, the analytical model becomes a less reliable predictor of induced infiltration. The numerical experiments show that streambed effects cannot be neglected if the streambed conductivity is more than one order of magnitude lower than the aquifer hydraulic conductivity. Areal recharge cannot be neglected if the ground water basin receives more than 5 in/yr of areal recharge. Three-dimensional flow effects due to well partial penetration cannot be neglected if the ratio of horizontal hydraulic conductivity to vertical hydraulic conductivity (Kh/Ku) is greater than 10. Surface water elevation fluctuations can significantly influence the induced infiltration rate, depending on the degree of fluctuations and the ground water hydraulic gradient.  相似文献   

8.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

9.
The Mersin-Kazanli region is a densely industrialized region. The factories and towns cover their water demand from groundwater. With the increased water demand, saltwater intrusion has occurred. The chloride concentration of the water samples from some wells has been analysed periodically since these wells were drilled. The results of these analyses and electrical conductivity measurements were used to show the history and development of saltwater intrusion up to the year 2000. The Cl(-) concentration of the water within the alluvial aquifer increased to over 3000 mg/l in 1999 and the wells were closed completely. In 2001 new wells were drilled more than 1 km away from the sea and old well field. With the results of the analyses conducted in 2001, the current groundwater quality was determined. The ground water is of the magnesium-calcium-bicarbonate type and this composition is controlled by the interaction of the water with the sediments of alluvial deposits.  相似文献   

10.
ABSTRACT: Feasibility of disposing treated sewage in wells sunk into a partially confined coastal limestone aquifer at Waimanalo in the island of Oahu was investigated using an electric analog model. Electric analog modeling was preferred over digital modeling because of ease with which tides could be generated at the ocean boundary in the form of sinusoidal waves. The results of model operation showed that high permeability, low storativity, and the presence of ocean render the Waimanalo aquifer highly suitable for the disposal of waste water in deep wells. Since the quality of water in the aquifer is already unsuitable for municipal, industrial, or agricultural use, waste water injection will not result in any loss of fresh water supply source to the island. It is also believed that the cost of waste water disposal through the aquifer will be considerably less than that through an ocean outfall. During model development it was discovered that electric analog models can help prepare certain graphs which can be useful for aquifer analysis without any further use of the model.  相似文献   

11.
Abstract: In recent years the ground‐water demand of the population of the island of Maui, Hawaii, has significantly increased. To ensure prudent management of the ground‐water resources, an improved understanding of ground‐water flow systems is needed. At present, large‐scale estimations of aquifer properties are lacking for Maui. Seven analytical methods using constant‐rate and variable‐rate withdrawals for single wells provide an estimate of hydraulic conductivity and transmissivity for 103 wells in central Maui. Methods based on constant‐rate tests, although not widely used on Maui, offer reasonable estimates. Step‐drawdown tests, which are more abundantly used than other tests, provide similar estimates as constant‐rate tests. A numerical model validates the suitability of analytical solutions for step‐drawdown tests and additionally provides an estimate of storage parameters. The results show that hydraulic conductivity is log‐normally distributed and that for dike‐free volcanic rocks it ranges over several orders of magnitude from 1 to 2,500 m/d. The arithmetic mean, geometric mean, and median values of hydraulic conductivity are respectively 520, 280, and 370 m/d for basalt and 80, 50, and 30 m/d for sediment. A geostatistical approach using ordinary kriging yields a prediction of hydraulic conductivity on a larger scale. Overall, the results are in agreement with values published for other Hawaiian islands.  相似文献   

12.
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability.  相似文献   

13.
ABSTRACT: Using a genetic algorithm (GA), optimal intermittent pumping schedules were established to simulate pump‐and‐treat remediation of a contaminated aquifer with known hydraulic limitations and a water miscible contaminant, located within the Duke Forest in Durham, North Carolina. The objectives of the optimization model were to minimize total costs, minimize health risks, and maximize the amount of contaminant removed from the aquifer. Stochastic ground water and contaminant transport models were required to provide estimates of contaminant concentrations at pumping wells. Optimization model simulations defined a tradeoff curve between the pumping cost and the amount of contaminant extracted from the aquifer. For this specific aquifer/miscible contaminant combination, the model simulations indicated that pump‐and‐treat remediation using intermittent pumping schedules for each pumping well produced significant reductions in predicted contaminant concentrations and associated health risks at a reasonable cost, after a remediation time of two years.  相似文献   

14.
ABSTRACT: Ground water, of relatively good quality, occurs though-out southeastern Montana's Tongue River basin and can be procured cheaply and easily. The widespread occurrence of springs and the de velopment of shallow aquifers enables settlement to occur away from perennial streams and allows for extensive grazing of the range. Ground water m the Tongue River basin occurs in five aquifers ranging from shallow alluvium to the extremely deep Madison Group. Coal beds of the Fort Union Formation contain significant quantities of good quality ground water. Extensive strip mining of these coal beds lowers the water level of nearby wells and causes springs to dry up. There are over 1,700 permits for ground water appropriation in the Tongue River Valley. Development of ground water has been especially important to ranchers in that it enabled most of the basin to be used for grazing. Ground water also provides an important source of water for domestic use. Ground water quality varies considerably in the basin depending upon locality and aquifer. Generally, ground water is characterized by high sodium, sulfate, and bicarbonate levels. Strip mining significantly alters ground water quality, primarily by leachates entering from the mine spoil.  相似文献   

15.
Abstract: Being able to identify riparian sites that function better for nitrate removal from groundwater is critical to using efficiently the riparian zones for water quality management. For this purpose, managers need a method that is quick, inexpensive, and accurate enough to enable effective management decisions. This study assesses the precision and accuracy of a simple method using three ground water wells and one measurement date for determining nitrate removal characteristics of riparian buffer zones. The method is a scaled‐down version of a complex field research method that consists of a large network of wells and piezometers monitored monthly for over two years. Results using the simplified method were compared to those from the reference research method on a date‐by‐date basis on eight sites covering a wide range of hydrogeomorphic settings. The accuracy of the three‐well, 1 day measurement method was relatively good for assessing nitrate concentration depletion across riparian zones, but poor for assessing the distance necessary to achieve a 90% nitrate removal and for estimating water and nitrate fluxes compared to the reference method. The simplified three‐well method provides relatively better estimates of water and nitrate fluxes on sites where ground‐water flow is parallel to the water table through homogeneous aquifer material, but such conditions may not be geographically widespread. Despite limited overall accuracy, some parameters that are estimated using the simplified method may be useful to water resource managers. Nitrate depletion information may be used to assess the adequacy of existing buffers to achieve nitrate concentration goals for runoff. Estimates of field nitrate runoff and buffer removal fluxes may be adequate for prioritizing management toward sites where riparian buffers are likely to have greater impact on stream water quality.  相似文献   

16.
ABSTRACT: The ability of batch-extraction experiments to predict postmining ground water quality was evaluated. As a basis for evaluation, mineralogical and water quality data were used to identify the geochemical reactions that controlled the major-ion chemistry in batch-extraction experiments. The experiments used water and spoil material collected from a surface-coal mine in the Powder River basin of northeast Wyoming. The batch-extraction experiments consisted of a 2:1 solid:liquid ratio of ground water and spoil material (by weight). The chemical composition of the resulting batch-extracts was determined after a contact time of 24 hours. Thermodynamically-favorable reactions included calcite precipitation, gypsum dissolution, and formation of kaolinite as a result of orthoclase feldspar hydrolysis. Three reaction models were consistent with the therinodynanuc and mineralogic data. In general, the extracts had smaller major-ion concentrations than did the water samples collected from the spoil aquifer. Correction ratios were calculated from these experiments and could be used in combination with additional batch-extractions at existing or future lease areas to predict the quality of the ground water after mining.  相似文献   

17.
A statistical technique which offers considerable promise in ground water studies is the fitting of polynomial trend-surfaces to ground water data and studying the variations in the surfaces and the residuals from these surfaces over a period of time. The application of trend-surface analysis to ground water study is based on the premise that the piezometric surface or water table can be approximated by a mathematically computed polynomial surface of the water levels of the wells in the aquifer. The evaluation of trend surface analysis application in ground water investigations was made up essentially of two considerations; a study of the relationship existing between the trend surfaces and the actual ground water surface and a study of the potential use of the residuals from the trend-surfaces to assist in the location of favorable sites for future development of ground water resources. The conclusions on aquifer behavior drawn from the trend surface analysis were compared with conclusions drawn from a concurrent survey of ground water conditions carried out independently of this investigation. This comparison provided the basis for the critical examination of the application of trend-surface analysis in ground water investigations.  相似文献   

18.
Abstract: Samples of ambient ground water were collected during 1985‐2002 from 3,498 wells in 98 aquifer studies throughout the United States. None of the sampled wells were selected because of prior knowledge of nearby contamination. Most of these samples were analyzed for 55 volatile organic compounds (VOCs) to characterize their national occurrence. Volatile organic compounds were found in samples collected from 90 of the 98 aquifer studies. Occurrence frequencies of one or more VOCs for the 98 aquifer studies ranged from 0 to about 77% at an assessment level of 0.2 microgram per liter (μg/l). The aquifer studies with the largest occurrence frequencies were in southern Florida, southern New York, southern California, New Jersey, and Nevada. Trihalomethanes and solvents were the most frequently occurring VOC groups. Of the 55 VOCs included in this assessment, 42 occurred in at least one sample at an assessment level of 0.2 μg/l. Chloroform, perchloroethene, and methyl tert‐butyl ether were the most frequently occurring VOCs. Many factors, such as the hydrogeology of the aquifer, use of VOCs, land use, and the transport and fate properties of VOCs, affect the occurrence of VOCs in ground water.  相似文献   

19.
ABSTRACT: The use of artificial recharge in Saskatchewan and the rest of Canada to improve rural community and farmstead domestic water supply has great potential. Approximately 75 percent of the people in rural Saskatchewan and 26 percent of all the people in Canada are dependent on ground water for their domestic water supply. Typically, this water is highly mineralized and is often unpalatable due to odor and taste. A source of readily available, high quality water to eliminate expensive chemical treatment of available water and long distance hauling would be of significant value to rural residents. Storage of high quality water in aquifers by injection through wells has been documented and has been shown to depend on the use of a surface water catchment system to provide the high quality water. Since air entrainment or formation clogging can occur in poorly operated recharge schemes, development of proper design and operation of recharging procedure is required. This can be accomplished by using an injection response computer model and a properly designed injection system. Small scale artificial recharge projects will provide a valuable commodity to rural water users and will promote sustainable and conjunctive use of surface and ground water resources.  相似文献   

20.
ABSTRACT: Landfill siting and design guidelines or regulations differ from state to state. Most include hydrogeological criteria, referring to hydraulic conductivities, aquifers, ground water flow patterns, contaminant travel times, and distance between landfill and sensitive targets for contaminants, etc. However, almost all of the existing hydrogeological guidelines are incomplete, inconsistent, or both. The aquitard between landfill and regional aquifer frequently offers less resistance to leachate migration than compliance with regulations may suggest. Residence times of leachate, that makes it through the landfill liner, is often overestimated. Monitoring wells in the regional aquifer are unreliable detectors of local leaks in a landfill. If a landfill does leak, costly aquifer restoration is called for. For traditional landfill designs, ground water monitoring considerations suggest the siting over homogeneous sand and gravel aquifers, rather than over complex till environments. An alternative landfill design criterion is suggested, which is based on a negative hydraulic gradient underneath the landfill. This design guarantees ground water protection, simplifies landfill monitoring, and generally enhances the landfill economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号