首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Mycorrhizal fungal identity and diversity relaxes plant-plant competition   总被引:1,自引:0,他引:1  
There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF diversity can act as insurance to sustain plant productivity under changing environmental conditions.  相似文献   

2.
Changes in the species composition of biotic communities may alter patterns of natural selection occurring within them. Native perennial grass species in the Intermountain West are experiencing a shift in the composition of interspecific competitors from primarily perennial species to an exotic, annual grass. Thus traits that confer an advantage to perennial grasses in the presence of novel annual competitors may evolve in invaded communities. Here I show that such traits are apparent in populations of a native perennial grass, big squirreltail (Elymus multisetus M.E. Jones), exposed to cheatgrass (Bromus tectorum L.) competitors. Dormant big squirreltail plants were collected from cheatgrass-invaded and uninvaded sites near Bordertown, California, USA, a mid-elevation (1600 m) sagebrush community, and transplanted into pots in a greenhouse. Individual plants were split into equal halves. One half was grown with competition from cheatgrass, and the other half was grown without competition. Plants collected from invaded sites responded more quickly to watering, growing more leaves in the first 10 days after transplanting. In addition, big squirreltail plants collected from invaded areas experienced a smaller decrease in plant size when grown with competition than did plants collected from uninvaded areas. Accordingly, while there were fewer big squirreltail individuals in the invaded sites, they were more competitive with cheatgrass than were the more abundant conspecifics in nearby uninvaded areas. It is possible that annual grasses were the selective force that caused these population differences, which may contribute to the long-term persistence of the native populations. While it is tempting to restore degraded areas to higher densities of natives (usually done by bringing in outside seed material), such actions may impede long-term adaptation to new conditions by arresting or reversing the direction of ongoing natural selection in the resident population. If hot spots of rapid evolutionary change can be identified within invaded systems, these areas should be managed to promote desirable change and could serve as possible sources of restoration material or reveal traits that should be prioritized during the development of restoration seed material.  相似文献   

3.
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.  相似文献   

4.
Murren CJ  Douglass L  Gibson A  Dudash MR 《Ecology》2006,87(10):2591-2602
Low Ca/Mg ratios (a defining component of serpentine soils) and low water environmental conditions often co-occur in nature and are thought to exert strong selection pressures on natural populations. However, few studies test the individual and combined effects of these environmental factors. We investigated the effects of low Ca/Mg ratio and low water availability on plant leaf, stem, stolon, and floral traits of Mimulus guttatus, a bodenvag species, i.e., a species that occurs in serpentine and non-serpentine areas. We quantified genetic variation and genetic variation for plasticity for these leaf, stem, stolon, and floral traits at three hierarchical levels: field-habitat type, population, and family, and we evaluated the relative importance of local adaptation and plasticity. We chose two populations and 10 families per population from four distinct field "habitat types" in northern California: high Ca/Mg ratio (non-serpentine) and season-long water availability, high Ca/Mg ratio and seasonally drying, low Ca/Mg ratio (serpentine) and season-long water availability, and low Ca/Mg ratio and seasonally drying. Seedlings were planted into greenhouse treatments that mimicked the four field conditions. We only detected genetic variation for stem diameter and length of longest leaf at the field-habitat level, but we detected genetic variation at the family level for nearly all traits. Soil chemistry and water availability had strong phenotypic effects, alone and in combination. Our hypothesis of an association between responses to low water levels and low Ca/Mg ratio was upheld for length of longest leaf, stem diameter, corolla width, and total number of reproductive units, whereas for other traits, responses to Ca/Mg ratio and low water were clearly independent. Our results suggest that traits may evolve independently from Ca/Mg ratios and water availability and that our focal traits were not simple alternative measures of vigor. We found genetic variation for plasticity both at the field-habitat type and family levels for half of the traits studied. Phenotypic plasticity and genetic variation for plasticity appear to be more important than local adaptation in the success of these M. guttatus populations found across a heterogeneous landscape in northern California. Phenotypic plasticity is an important mechanism maintaining the broad ecological breadth of native populations of M. guttatus.  相似文献   

5.
化学农药污染土壤植物修复中的环境化学问题   总被引:7,自引:1,他引:7  
报道了利用植草修复受DDT,BHC和Dicofol污染的研究,讨论了化学农药污染土壤植物修复中,农药在植物中富集与在土壤中降解以及结合残留等环境化学问题。研究表明,在植物修复的过程中,通过草对农药吸收的途径而去除土壤中污染物的作用所作的贡献很小,植草的作用可能是通过草的根部向土壤释放酶和某些分泌物,从而激发土壤中微生物的活性,并加速农药生物降解作用的结果。草在不同土壤中修复能力的差异,可能与不同土壤中所存土著微生物的差异以及其活性受酶和某些分泌物所激发差异的结果。选择能使根际区产生强烈的生物降解作用的草品种,是利用草作为化学农药污染土壤修复的关键。土壤与植株中农药结合残留的形成可能是土壤中污染物消除的又一个重要因素。  相似文献   

6.
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.  相似文献   

7.
This paper aimed to confirm the hypothesis that rates of ammonification and net mineral-N production in soils under grass in summer are low and this, rather than nitrate uptake by plants, reduces mineral leaching from soils in summer. Six sets of soil samples were collected from under mown grass on the University of York campus in the UK. Samples were taken from two depths in late summer (August) and late autumn (November) to compare seasonal differences in N species transformations when field-moist soils were incubated for a week at ambient outdoor temperatures after prior removal of vegetation. Ammonification and net mineral-N production rates were low in August in spite of warm temperatures. Net mineral-N production rates were also low in November. The results agreed with those of an earlier study in a different year after considering weather differences between years. They support the hypothesis that litter accumulated over autumn/winter will be minimally mineralised and retain N before the temperature rises in spring. The study shows the merit of measuring concentrations of mineral-N species in both fresh soils and soils incubated at ambient outdoor temperatures after removing plant material to eliminate plant N uptake effects. The results suggest that soil C% and N% are more important than soil C:N ratio alone in understanding controls on N transformations.  相似文献   

8.
酸雨对外来植物入侵的影响   总被引:2,自引:0,他引:2  
廖周瑜  彭少麟 《生态环境》2007,16(2):639-643
酸雨和外来种入侵都是全球关注的问题。结合外来入侵植物的生态适应特性以及酸雨的危害特征,系统分析了酸雨对外来植物入侵产生的影响。酸雨对外来植物入侵的影响是复杂多样的。酸雨导致群落冠层稀疏,群落透光率增加,加之氮沉降后土壤、水体氮素的增加,有利于生长力强的外来喜阳植物入侵;酸雨加速土壤酸化,促使基本离子淋失以及A1毒等危害植物的生长发育,植物的内源激素以及化感作用发生改变,适应力和耐受力强的外来植物在与本地植物竞争中处于相对优势而成为入侵种;酸雨以及外来植物入侵改变了土壤微生物群落结构,影响本地植物的生长而促使外来植物的入侵。  相似文献   

9.
Hays CG 《Ecology》2007,88(1):149-157
Populations of intertidal species span a steep environmental gradient driven by differences in emersion time. In spite of strong differential selection on traits related to this gradient, the small spatial scale over which differences occur may prevent local adaptation, and instead may favor a single intermediate phenotype, or nongenetic mechanisms of differentiation. Here I examine whether a common macroalga, Silvetia compressa, exhibits phenotypic differentiation across the intertidal gradient and evaluate how local adaptation, developmental plasticity, and maternal effects may interact to shape individual phenotypes. Reciprocal transplants of both adults and embryos showed a "home-height advantage" in two of the three populations tested. In laboratory trials, the progeny of upper-limit individuals survived exposure to air significantly better than lower-limit progeny from the same population. I compared the emersion tolerance of full-sib families generated from gametes produced in the field to those produced under common garden conditions. The relative advantage of upper-limit lineages was robust to maternal environment during gametogenesis; this pattern is consistent with genetic differentiation. The possible role of local adaptation has historically been ignored in studies of intertidal zonation. In S. compressa, phenotypic differentiation may have important consequences for vertical range, both within and among sites.  相似文献   

10.

There is no information yet about plant species capable of accumulating many different metals/metalloids. The plants feasible for phytoremediation aims must grow fast, have high biomass, deep roots, and should accumulate and tolerate a range of toxicants in their aerial parts. In our research, greenhouse and field experiments have been performed to investigate accumulation and tolerance of not well-studied trace elements such as Br, Eu, Sc, Th (and also U) in couch grass and wheat. We compared bioaccumulation abilities of the plants with those of some other plant species grown under the same conditions. Additionally, we tested the effects of inoculation of seeds with Cellulomonas bacteria on phytoextraction of the trace elements from contaminated soils. For determination of elements, we used neutron activation analysis and ICP-MS. It was found that couch grass and wheat can grow in heavily contaminated soils and accumulate different toxic trace elements to levels that exceed physiological requirements typical for most plant species. Infection of seeds with bacteria resulted in a significant increase in the uptake of various trace elements and their translocation to upper plant parts. The use of couch grass and/or wheat, either alone or in combination with microorganisms, is a promising way to phytoextract metals/metalloids from contaminated soils.

  相似文献   

11.
Fréville H  McConway K  Dodd M  Silvertown J 《Ecology》2007,88(10):2662-2672
The global extinction of species proceeds through the erosion of local populations. Using a 60-year time series of annual sighting records of plant species, we studied the correlates of local extinction risk associated with a risk of species extinction in the Park Grass Experiment where plants received long-term exposure to nutrient enrichment, soil acidification, and reductions in habitat size. We used multivariate linear models to assess how extrinsic threats and life history traits influence extinction risk. We investigated effects of four extrinsic threats (nitrogen enrichment, productivity, acidification, and plot size) as well as 11 life history traits (month of earliest flowering, flowering duration, stress tolerance, ruderalness [plant species' ability to cope with habitat disturbance], plant height, diaspore mass, seed bank, life form, dispersal mode, apomixis [the ability for a species to reproduce asexuall through seeds], and mating system). Extinction risk was not influenced by plant family. All of the 11 life history traits except life form and all threat variables influenced extinction risk but always via interactions which typically involved one threat variable and one life history trait. We detected comparatively few significant interactions between life history traits, and the interacting traits compensated for each other. These results suggest that simple predictions about extinction risk based on species' traits alone will often fail. In contrast, understanding the interactions between extrinsic threats and life history traits will allow us to make more accurate predictions of extinctions.  相似文献   

12.
Flight distance of urban birds, predation, and selection for urban life   总被引:4,自引:1,他引:3  
Numerous species have adapted to humans, especially invasive species associated with humans in towns and cities. Short flight distances of populations adapted to urban environments reflect changes in behavior and physiology, reflecting phenotypic plasticity or evolution. Here, I tested the hypothesis that the decrease in flight distance to a potential predator (an approaching human) reflected adaptation to urbanization, using a data set of flight distances of 44 common species of European birds in different stages of adaptation to urban environments. Urban populations had consistently shorter flight distances than rural populations of the same species. Variation in relative flight distance of urban populations was predicted by the number of generations since urbanization, as expected by a gradual process of adaptation. Furthermore, species with relatively large populations in urban environments would be an indication of local adaptation to urban environments. Relative flight distance of urban population was shorter for species with large populations in urban compared to rural habitats. Species that had adapted to urban environments as shown by short flight distances were less susceptible to predation by the European sparrowhawk Accipiter nisus than species with relatively long flight distances in urban populations. These findings provide evidence consistent with the hypothesis that recent changes in the tameness of urban birds, as reflected by their relatively short flight distances, is an adaptation to the novel urban environment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Geochemical mapping of soils and selected plant species has been carried out in the Mole National Park, Ghana. The distribution of the essential nutrients: cobalt, copper and manganese is largely controlled by bedrock geology, while the geochemical dispersion of Ca, I, Fe, Mg, Mo, P, K, Se, Na and Zn has been modified by soil and hydromorphic processes. From selective extraction experiments, Fe, Mn and Co are found to be largely fixed in the soil mineral fraction. Larger proportions of Cu, I, Mo, Se and Zn are EDTA extractable and have a high chelation potential.Cobalt, Cu and Mn were preferentially concentrated in grass species while molybdenum and selenium are concentrated in browse plants. Copper uptake is antagonistic to Fe, Mo and Zn accumulation in all plant and grass samples. Similarly, Se and Mn appear antagonistic and Fe uptake is antagonistic to Co, Cu, Mn, Mo and Zn.The low concentration of P points to a potential dietary deficiency of this element throughout the park. Cobalt deficiency may also occur due to a love extractability of these elements in the soils and low concentration in plants. However, the lack of data on the elemental requirements of wildlife allows only tentative conclusions to be drawn.  相似文献   

14.
Glassman SI  Casper BB 《Ecology》2012,93(7):1550-1559
Investigating how arbuscular mycorrhizal fungi (AMF)-plant interactions vary with edaphic conditions provides an opportunity to test the context-dependency of interspecific interactions. The relationship between AMF and their host plants in the context of other soil microbes was studied along a gradient of heavy metal contamination originating at the site of zinc smelters that operated for a century. The site is currently under restoration. Native C3 grasses have reestablished, and C4 grasses native to the region but not the site were introduced. Interactions involving the native mycorrhizal fungi, non-mycorrhizal soil microbes, soil, one C3 grass (Deschampsia flexuosa), and one C4 grass (Sorghastrum nutans) were investigated using soils from the two extremes of the contamination gradient in a full factorial greenhouse experiment. After 12 weeks, plant biomass and root colonization by AMF and non-mycorrhizal microbes were measured. Plants from both species grew much larger in soil from low-contaminated (LC) origin than high-contaminated (HC) origin. For S. nutans, the addition of a non-AMF soil microbial wash of either origin increased the efficacy of AMF from LC soils but decreased the efficacy of AMF from HC soils in promoting plant growth. Furthermore, there was high mortality of S. nutans in HC soil, where plants with AMF from HC died sooner. For D. flexuosa, plant biomass did not vary with AMF source or the microbial wash treatment or their interaction. While AMF origin did not affect root colonization of D. flexuosa by AMF, the presence and origin of AMF did affect the number of non-mycorrhizal (NMF) morphotypes and NMF root colonization. Adding non-AMF soil biota reduced Zn concentrations in shoots of D. flexuosa. Thus the non-AMF biotic context affected heavy metal sequestration and associated NMF in D. flexuosa, and it interacted with AMF to affect plant biomass in S. nutans. Our results should be useful for improving our basic ecological understanding of the context-dependency of plant-soil interactions and are potentially important in restoration of heavy-metal-contaminated sites.  相似文献   

15.
Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States. The authors gratefully acknowledge the assistance of M.A. Norem with portions of the research involving this contribution. The authors also express their appreciation to the Gulf States Paper Corporation in Tuscaloosa. Alabama for providing the Hold-Gro Erosion Control Fabrie used in this research. Contribution from the Arizona Agr. Exp. Stn., University of Arizona, Tucson, Arizona 85721. Approved for publication as Arizona Agr. Exp. Stn. Research Contribution No. 3767.  相似文献   

16.
Amplifying the benefits of agroecology by using the right cultivars   总被引:1,自引:0,他引:1  
Tropical soils are particularly vulnerable to fertility losses due to their low capacity to retain organic matter and mineral nutrients. This urges the development of new agricultural practices to manage mineral nutrients and organic matter in a more sustainable way while relying less on fertilizer inputs. Two methods pertaining to ecological engineering and agroecology have been tested with some success: (1) the addition of biochar to the soil, and (2) the maintenance of higher earthworm densities. However, modern crop varieties have been selected to be adapted to agricultural practices and to the soil conditions they lead to and common cultivars might not be adapted to new practices. Using rice as a model plant, we compared the responsiveness to biochar and earthworms of five rice cultivars with contrasted selection histories. These cultivars had contrasted responsivenesses to earthworms, biochar, and the combination of both. The mean relative increase in grain biomass, among all treatments and cultivars, was 94% and 32%, respectively, with and without fertilization. Choosing the best combination of cultivar and treatment led to a more than fourfold increase in this mean benefit (a 437% and a 353% relative increase in grain biomass, respectively, with and without fertilization). Besides, the more rustic cultivar, a local landrace adapted to diverse and difficult conditions, responded the best to earthworms in terms of total biomass, while a modern common cultivar responded the best in term of grain biomass. This suggests that cultivars could be selected to amplify the benefit of biochar- and earthworm-based practices. Overall, selecting new cultivars interacting more closely with soil organisms and soil heterogeneity could increase agriculture sustainability, fostering the positive feedback loop between soils and plants that has evolved in natural ecosystems.  相似文献   

17.
Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments. This study is the first to examine the interaction between above- and belowground diversity in a natural setting with species-level resolution of a hyper-diverse taxon. Our results indicate that grasses in diculture supported a more species and phylogenetically rich soil mite fauna than was observed for monocultures and that this relationship was significant at depth but not in the upper soil horizon. We noted that mite species richness was not linearly related to grass species richness, which suggests that simple extrapolations of soil faunal diversity based on plant species inventories may underestimate the richness of associated soil mite communities. The distribution of mite size classes in dicultures was considerably different than those for monocultures. There was no difference in soil mite richness between grass combinations of differing resource quality, or resource heterogeneity.  相似文献   

18.
The persistence of narrowly adapted species under climate change will depend on their ability to migrate apace with their historical climatic envelope or to adapt in place to maintain fitness. This second path to persistence can only occur if there is sufficient genetic variance for response to new selection regimes. Inadequate levels of genetic variation can be remedied through assisted gene flow (AGF), that is the intentional introduction of individuals genetically adapted to localities with historic climates similar to the current or future climate experienced by the resident population. However, the timing of reproduction is frequently adapted to local conditions. Phenological mismatch between residents and migrants can reduce resident × migrant mating frequencies, slowing the introgression of migrant alleles into the resident genetic background and impeding evolutionary rescue efforts. Focusing on plants, we devised a method to estimate the frequency of resident × migrant matings based on flowering schedules and applied it in an experiment that mimicked the first generation of an AGF program with Chamaecrista fasciculata, a prairie annual, under current and expected future temperature regimes. Phenological mismatch reduced the potential for resident × migrant matings by 40–90%, regardless of thermal treatment. The most successful migrant sires were the most resident like in their flowering time, further biasing the genetic admixture between resident and migrant populations. Other loci contributing to local adaptation—heat‐tolerance genes, for instance—may be in linkage disequilibrium with phenology when residents and migrants are combined into a single mating pool. Thus, introgression of potentially adaptive migrant alleles into the resident genetic background is slowed when selection acts against migrant phenology. Successful AGF programs may require sustained high immigration rates or preliminary breeding programs when phenologically matched migrant source populations are unavailable.  相似文献   

19.
添加植物物料对2种酸性土壤可溶性铝的影响   总被引:2,自引:1,他引:1  
在室内培养试验条件下,研究了添加非豆科的油菜秸秆、小麦秸秆、稻草、玉米秸秆和豆科的大豆秸秆、花生秸秆、蚕豆秸秆、紫云英、豌豆秸秆对酸性茶园黄棕壤和红壤可溶性铝总量及其形态的影响.结果表明,黄棕壤除添加油菜秸秆、小麦秸秆和稻草处理外,其余添加植物物料处理土壤可溶性铝总量、总单核铝和3种无机单核铝的含量有不同程度的降低,因为加入这些植物物料均使土壤pH值增大.5种豆科植物物料对黄棕壤pH值的影响大于非豆科植物物料,前者对土壤中3种无机单核铝含量的影响也大于后者.9种植物物料也使红壤pH值有不同程度升高,土壤可溶性铝含量降低,其中4种非豆科植物物料、花生秸秆和蚕豆秸秆处理效果较好.因此,施用植物秸秆能够有效改良土壤酸度,缓解土壤中铝对植物的毒害.总体而言,9种植物物料中花生秸秆增加酸性土壤pH值和降低土壤有毒形态铝含量效果最好.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号