首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
利用辽宁省52个地面气象观测站的观测资料,对辽宁省不同等级霾日时空变化特征和气候成因进行分析.结果表明,辽宁省霾日在空间上存在一个高值中心(沈阳)和两个副高值中心(锦州西南部和朝阳东部),年平均霾日在50 d以上,辽西山区和东北部山区年平均霾日最少在10 d以下.辽宁省霾日主要集中在冬秋季,占全年霾日60%以上,夏季次之,春季最少;1961—2013年辽宁省平均霾日呈明显增加趋势(3.5d/10 a),轻微霾日、轻度霾日和中度霾日也呈显著增加趋势,重度霾日无明显变化.不利的气候条件加剧了霾日的出现,霾日数与降水日数呈显著负相关,降水日数的显著减少(-2.6 d/10 a)导致大气对污染物的沉降能力减弱,而静风日数增加(5.1 d/10 a)、年平均风速减小(-0.2m·s-1/10 a)和大风日数的减少(-10.1 d/10 a)则使得空气中污染物不易扩散,增加了霾天气形成的概率.  相似文献   

2.
基于乌鲁木齐市1973-2012年逐日气温、降水、风速、能见度等资料,分析了霾日数的时间变化特征及其与气象因子的关系。结果表明:乌鲁木齐霾主要发生在冬半年,其中10月霾日数最多;夏半年发生较少。年霾日数、年霾最大持续日数、轻度霾日数、中度霾和重度霾日数总体都呈减少趋势,且都在1981-1990年发生最多,在1991-2000年发生最少。年霾日数存在18~20 a的周期,并在1990年发生减少突变。霾日数与气象因子有密切的相关性,平均水汽压、年平均相对湿度和年降水量与霾日数呈正相关,风速和平均气温与霾日数呈负相关,日照时数与霾日数相关性不显著。  相似文献   

3.
利用1961~2016年京津冀90个国家级气象站的霾数据集、日平均相对湿度、14:00能见度、日平均气温、日累计降水、日平均风速、辐射等数据,采用MASH方法、线性趋势分析方法、曼-肯德尔(Mann-Kendall)法以及相关分析等方法研究了京津冀地区霾天气影响下的气候变化特征.结果表明:京津冀地区年平均霾日数呈明显的增长趋势,增长率为5d/10a以上,大中城市年平均霾日数明显高于其他地区,霾日数突变增多发生在1992~1993年,在国家大气污染防治专项资金注入以后年平均霾日数增长趋势减缓;京津冀地区霾日和非霾日年平均气温呈上升趋势,年平均能见度呈下降趋势;年平均降水日数总体趋势减少,但是霾日降水日数逐年增加,而非霾日呈现减少趋势,两者呈现对称相反关系;京津冀霾日和非霾日年平均风速均呈逐年下降趋势;霾日数具有随着GDP、能源消耗的增加逐年递增趋势.京津冀地区霾日和非霾日年平均总辐射和散射辐射都是逐年下降,霾日比非霾日下降趋势更加明显,年平均总辐射比散射辐射下降明显;年平均霾日数与年平均总辐射、年平均风速、年平均降水呈负相关,但是与年平均气温、GDP、能源消耗呈正相关.  相似文献   

4.
1981~2010年深圳市不同等级霾天气特征分析   总被引:6,自引:0,他引:6  
利用1981~2010年深圳市地面观测及空气质量监测资料,分析深圳不同等级霾天气的长期变化特征以及大气水平能见度、空气质量与霾的关系.结果表明:深圳霾日数总体呈增多趋势,强度增强,中度以上霾增多;各等级霾日数均呈增多态势,但不同等级霾日占年总霾日的比例变化趋势不同,轻微霾所占比例下降,轻度以上霾上升; 霾天气呈现冬季>秋季>春季>夏季的季节特征,但重度霾却是夏季最多; 霾导致大气水平能见度明显下降,霾日平均能见度较非霾日低6~7km,霾等级越高,能见度下降越明显,霾日能见度日变化幅度较非霾日小;霾日SO2、NO2浓度为非霾日的1.4~1.7倍,PM10是非霾日的2.2倍,大气颗粒物污染加剧可能是深圳能见度恶化、霾天气增多的一个重要原因;针对荔香站霾日SO2浓度日变化不明显,PM10 、NO2浓度呈双峰型分布,与上下班时段吻合,说明机动车的增加也是深圳霾天气增多的主因之一;霾等级越高,空气中PM10、SO2、NO2的浓度越高,从轻微到重度霾各级之间SO2、NO2和PM10浓度增幅大都在15%~20%.  相似文献   

5.
利用1981~2016年四川盆地102个气象观测站逐日霾日观测资料,对四川盆地持续霾事件(定义为连续3d及以上有烟幕或霾发生的天气)的时空分布特征、变化趋势进行分析,然后对冬季霾事件环流场特征进行研究.结果表明:1981~2016年四川盆地持续霾事件的年平均日数呈增加趋势,持续霾事件日数占霾总日数的百分比与霾总日数增加趋势较为一致,霾总日数的增加主要是由持续霾事件的增加引起的.四川盆地持续霾事件的空间分布不均匀,与霾日数的大值区的分布较为一致,主要集中在川东北城市群、成都平原城市群以及川南城市群.持续霾事件多发区的范围在1981~2010年呈年代际增大,在2011~2016年范围减少显著.通过分析盆地冬季霾事件的环流场发现,霾事件偏多(少)年时段,四川盆地处于暖(冷)高(低)压大值区域,乌拉尔山阻塞高压偏弱(强),东亚大槽偏弱(强),盆地上空为一定程度的辐合(辐散),存在(不存在)明显逆温结构,垂直上升运动弱(强),这些条件均有利于污染物颗粒聚集在浅薄的边界层内(利于污染物的扩散),造成霾天气的维持(消散).  相似文献   

6.
1980~2012年江苏省城市霾日的时空分布及成因分析   总被引:3,自引:1,他引:2  
刘端阳  魏建苏  严文莲  吕军  孙燕 《环境科学》2014,35(9):3247-3255
利用1980~2012年江苏省气象观测资料,对江苏省城市霾时空分布及成因进行了分析.结果表明,1980~2012年江苏省霾日增加,重度和中度霾增加显著,苏北和沿海城市霾日增加显著.秋季和冬季霾日最多,夏季最少.秋、冬季霾主要在内陆,沿海略少.除苏南三城市,6月其他城市霾日都比较多.80年代霾日较为均匀,90年代苏南、苏西南增加,2000年代江淮之间和苏北增加,2010~2012年苏北霾日增加显著,苏南地区霾日略有减少.全省连续性霾日、区域性霾日及连续性区域霾都呈增加趋势.城市建成区面积逐年扩大、由工业及汽车尾气排放的污染物逐年增加,导致区域气温升高、空气相对湿度下降,形成城市热岛和干岛效应,加上污染物的增多,增强了霾形成和维持的条件,持续性霾、区域性霾和持续性区域霾也增加较为显著.  相似文献   

7.
利用线性回归、聚类分析及相关分析等统计方法对华南地区57个地面气象站的观测资料进行分析,探究近54年华南地区霾日数的时空变化特征及其气候成因.结果表明,年平均霾日数大值区主要分布在广东珠江三角洲(珠三角)地区和广西中东部.54年来霾日数呈现显著的上升趋势,而2008年后有所下降.霾日数的季节变化表现为冬季最多,其次是秋季和春季,夏季最少.2008年以后春、夏、秋3季霾日数有所下降,而冬季仍维持在较高水平.不同等级霾日数在近54年来均有不同程度的上升,霾污染不仅在日数上有明显的增加趋势,而且污染强度在加强.不同地区霾日数的快速增长时期不一样,污染严重和正常污染地区发生在20世纪90年代,而相对清洁地区发生在2000年以后.另外近10年污染严重和正常污染地区霾日数有所下降,但相对清洁地区仍维持快速的增长趋势.近54年华南地区年降水日数、年平均风速、大风日数和年小风日数等气候因子变化结果致使气溶胶粒子的湿沉降减弱,污染物扩散能力下降,霾天气生成概率增加.  相似文献   

8.
京津冀区域霾天气特征   总被引:44,自引:1,他引:44       下载免费PDF全文
汇总京津冀区域内107个地面站的气象资料,利用14时实测的气象要素和天气现象资料对霾日进行判别,统计出各个站点1980~2008年中逐年及各月的霾日数.结果表明,北京、天津、河北霾天气整体变化趋势和波动特征较为相似,且均呈增加趋势,非城区站点平均霾日数明显呈增加趋势,且与市区站点霾日数的差距越来越小.京津冀区域霾日数的月际变化呈明显的双峰特征,即夏季和冬季霾日数较高.空间分布表明,霾日数高值区主要位于北京、天津、保定、石家庄、邯郸和邢台等地.多数站点霾日14时平均风速比非霾日低了1.0m/s以上,14时平均相对湿度则比非霾日高出20%以上.  相似文献   

9.
利用1960~2012年长江三角洲地区气象观测资料,对长江三角洲区域雾和霾的时空分布及其影响因素进行了分析.结果表明:长江三角洲地区雾、霾分布不均匀,雾日大值区主要分布在江苏省盐城中部沿海地区、安徽省黄山地区、浙江东部沿海地区,霾日大值区主要分布在以南京、杭州、合肥、衢州为中心的周边城市.时间变化上,城市化水平高的大城市年雾日数在20世纪80年代之前呈增加趋势,之后呈减少趋势;城市化水平低的小城市年雾日数也呈先升后降的趋势,但下降时间滞后于大城市.大城市雾日月平均分布冬季最多,春秋季次之,夏季最少,小城市雾日月平均分布呈双峰型特征,即春季和冬季较多.大城市和小城市年平均霾日数一直呈增加趋势且20世纪90年代之后差距变大.区域气候变化和城市化导致的温度上升,空气污染加剧导致的气溶胶增加,是造成长江三角洲雾日、霾日不同变化特征的原因,但它们之间的相互作用效应复杂,值得深入研究.  相似文献   

10.
利用广州5个地面观测站1961-2013年的天气现象观测资料,及1980-2013年相对湿度、能见度,采用观测法及UV日均法,分析了2种霾日数统计方法下,广州年霾日时空特征和变化。结果表明:观测霾日及UV日均法计算霾日得到的灰霾影响区较一致,广州中心城区为多灰霾区;年平均观测霾日及年平均计算霾日分别以18.8和10.0 d/10 a的速率显著增加,变化趋势一致,但观测霾日的上升速率要明显大于计算霾日;观测霾日与计算霾日的年序列均在20世纪80年代中期左右发生增加的突变。5个站的年观测霾日的长期趋势变化均为一致的显著增加,但计算霾日长期趋势变化有明显的空间差异,花都、增城显著增加,而广州为减少趋势。各单站计算霾日也均大于观测霾日。  相似文献   

11.
利用陕西省地面气象观测站观测资料、中国国家统计局统计资料、美国NASA的MODIS气溶胶光学厚度(AOD)资料以及NCEP/NCAR月平均再分析资料,对1980~2016年陕西省冬季霾日数的时空变化特征及可能原因进行了分析,结果表明:(1)1980~2016年冬季陕西省平均霾日数为12d左右,并且伴有明显的年代际变化;其中1980~2012年冬季霾日数波动明显,1980~1993年偏多,1994~2012年偏少,2013年之后霾日数增加明显.(2)1980~2016年冬季陕西的霾日数有显著的区域差异.关中地区的霾日数最多,平均每年大于18d;陕南地区次之,年平均霾日数为10d左右;陕北地区最少,平均霾日数仅3d左右.陕北、关中、陕南3大区域冬季的霾日数均在2013年后出现了明显的增多.(3)2000~2016年冬季MODIS卫星监测的陕西AOD在关中咸阳、西安、渭南以及汉中南部和安康南部存在明显的高值区,大于0.4,其中关中气溶胶高值区域与关中地区霾日数大值区域有很好的对应关系.(4)2013~2016年冬季我国中东部的对流层低层的东风异常是向陕西关中地区输送气溶胶的有利条件,是霾天气的产生原因之一;2013~2016年陕西冬季对流层低层存在一个明显的位温梯度增大的区域,是不利于霾向高空扩散的大气层结条件,是霾日数明显增加的另一个原因.  相似文献   

12.
利用2009—2013年冬季地面气象观测数据筛选出非霾和不同强度霾的影响时次,采用能见度与消光系数的定量关系和冬季波长系数对微霾冲激光雷达反演修正得到的气溶胶消光系数,分析了上海地区气溶胶在垂直高度上的集中范围,当地面出现轻微霾、轻度霾、中度霾、重度霾时气溶胶分别主要集中于近地面0.81、0.49、0.41、0.40 km以下,非霾时气溶胶主要集中在近地面1.35 km以下;在此基础上,根据判别不同强度霾的能见度标准和能见度与消光系数的定量关系,将能见度换算为消光系数,再对微脉冲激光雷达反演消光系数进行修正,从而判断高空霾的强度及所处的高度;另外还探讨了云对产生重度霾的影响、降水与中度霾和重度霾的关系以及颗粒物质量浓度与不同强度霾的关系,发现48.53%的重度霾是受云影响而产生的,37.11%中度霾发生前后伴有降水现象,51.14%的重度霾发生前后伴有降水现象,非霾、轻微霾,轻度霾、中度霾、重度霾期间的颗粒物浓度和细颗粒物占的比例依次增大.  相似文献   

13.
利用2010~2013年逐时霾、能见度和空气质量监测数据,分析了深圳霾天气的变化特征、霾与空气质量和气象条件的关系.结果表明:深圳市霾日数总体呈现增多增强趋势,2009年开始明显下降;霾日数呈“V”型月变化:即秋冬季多、春夏季少,秋冬季多发持续时间长、影响严重的霾过程,春夏季多发持续时间短的霾过程; 霾常伴有污染发生(35%),污染以轻度污染为主;霾时首要污染物PM2.5最多、其次O3,这说明PM2.5是造成深圳霾的主因,且深圳光化学污染严重. 霾时PM2.5、PM10 和O3季节变化明显,冬春季首要污染物以PM2.5为主(75%以上),夏秋季O3和PM2.5为主;分析还发现,风、相对湿度与霾密切相关,风速越弱,湿度越大, 越利于霾出现和发展.约80%的中重度霾出现在风速<2m/s,相对湿度70%~90%的情况下.  相似文献   

14.
利用江西省1960~2016年82个气象站水平能见度、相对湿度和天气现象等资料,重建了江西省霾日序列,分析了江西省霾日数的年际变化特征,并通过霾日数与降水日数、大风日数和静风日数的相关关系,探讨了不同季节霾日数年际变化的气候成因.结果表明:1960~2016年江西省霾日数表现为在1970s有明显偏高、1980年后显著增加趋势(0.53d/a),赣北地区霾日多且增加速率快.四季霾日数均有增加,其中秋季贡献最大(0.21d/a,P<0.001),春季其次(0.12d/a,P<0.001),冬季霾日数最多,但年际趋势并不显著(0.10d/a,P>0.05),夏季年均霾日数较低,增加幅度最小(0.09d/a,P<0.001).过去几十年降水日数减少(-0.26d/a,P>0.05)导致大气湿沉降能力减弱,以及大风日数减少(-0.33d/a,P<0.01)和静风日数增加(1.73d/a,P<0.01)导致大气扩散能力降低,为江西省霾日增加提供了有利气候背景.但主要气候成因因季节不同:春季霾日数增加的主要气候成因是大风日数减少(r=-0.48,P<0.01),与其他要素的关系不显著;夏季亦与大风日数减少显著相关(r=-0.50,P<0.01),同时与静风日数增加显著相关(r=0.37,P<0.05);秋季受大风日数减少、静风日数增加以及降水日数减少共同影响,导致秋季霾日增加速率最快;冬季霾日数仅与降水日数显著相关(r=-0.36,P<0.05),但由于冬季降水日数变化趋势不明显(-0.26d/a,P>0.05),冬季霾日数变化不显著.  相似文献   

15.
长江三角洲地区1980~2009年灰霾分布特征及影响因子   总被引:4,自引:0,他引:4       下载免费PDF全文
选取中国长江三角洲地区38个观测站1980~2009年的地面观测资料和2001~2009年国家环境保护总局公布的空气污染指数(API)数据,统计分析了长江三角洲地区近30年灰霾分布情况.计算了观测站点的消光系数并进行了两次订正,给出了其季均值和年均值分布情况,讨论了3个典型站(南京、杭州和合肥)的能见度与灰霾日数、干消光系数和API之间的关系.结果表明,近30年来,长江三角洲地区的灰霾日数整体呈增长趋势,有71%的站点灰霾日数的年平均增长率大于零.订正后的消光系数冬季高,夏季低.南京、杭州和合肥灰霾日数与干消光系数的增长趋势一致,在霾日,南京、杭州和合肥三地,能见度与API呈负相关,其相关性随相对湿度的增加而增强.  相似文献   

16.
安徽省持续性区域霾污染的时空分布特征   总被引:1,自引:0,他引:1  
根据天气和气候特征,将安徽省分为沿淮淮北、江淮之间和沿江江南3个子区,并定义了持续性区域性霾过程.基于气象、环保及遥感资料,分析了安徽省持续性区域性霾过程及相应的气溶胶污染的时空分布特征.结果表明,江淮之间和沿江江南区域性霾日数自1980年开始总体呈增多趋势,沿淮淮北2000年开始增加趋势明显;1980年以来,城市持续性霾过程呈增多趋势,但城市之间差异较大;2000年之后持续性区域性霾过程明显增多,最长过程可达10d以上.62%以上的持续性区域性霾过程出现在冬季;江淮之间次数最多,沿江江南次数最少.区域性霾天气常对应着大范围的高湿、小风情况,并伴随着高浓度气溶胶污染,其光学厚度大于0.9,约是晴空天的2.3倍,气溶胶主要集中在400m以下,如近地面区域性霾天的消光系数是普通霾天的2~2.5倍,晴空天的3~5倍;地面PM2.5污染而言,区域性霾天至少有一个或以上的城市AQI会达到轻度以上污染等级的概率超过了75%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号