首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed a sociocultural preference assessment for a suite of ecosystem services provided by the Kiamichi River watershed in the south‐central United States, a region with intense water conflict. The goal was to examine how a social assessment of services could be used to weigh tradeoffs among water resource uses for future watershed management and planning. We identified the ecosystem services beneficiaries groups, analyzed perception for maintaining services, assessed differences in the importance and perceived trends for ecosystem services, and explored the perceived impact on ecosystem services arising from different watershed management scenarios. Results show habitat for species and water regulation were two ecosystem services all beneficiaries agreed were important. The main discrepancies among stakeholder groups were found for water‐related services. The identification of potential tradeoffs between services under different flow scenarios promotes a dynamic management strategy for allocating water resources, one that mitigates potential conflicts. While it is widely accepted the needs of all beneficiaries should be considered for the successful incorporation of ecosystem services into watershed management, the number of studies actually using the sociocultural perspective in ecosystem service assessment is limited. Our study demonstrates it is both possible and useful to quantify social demand of ecosystem services in watershed management.  相似文献   

2.
Healthy watersheds provide valuable services to society, including the supply and purification of fresh water. Because these natural ecosystem services lie outside the traditional domain of commercial markets, they are undervalued and underprotected. With population and development pressures leading to the rapid modification of watershed lands, valuable hydrological services are being lost, which poses risks to the quality and cost of drinking water and the reliability of water supplies. Increasing the scale and scope of programmes to protect hydrological services requires policies that harmonize land uses in watersheds with the provision of these important natural services. This article summarizes key attributes of hydrological services and their economic benefits; presents a spectrum of institutional mechanisms for safeguarding those services; discusses programmes in Quito (Ecuador), Costa Rica and New York City; and offers some lessons learned and recommendations for achieving higher levels of watershed protection.  相似文献   

3.
ABSTRACT: Significant land cover changes have occurred in the watersheds that contribute runoff to the upper San Pedro River in Sonora, Mexico, and southeast Arizona. These changes, observed using a series of remotely sensed images taken in the 1970s, 1980s, and 1990s, have been implicated in the alteration of the basin hydrologic response. The Cannonsville subwatershed, located in the Catskill/Delaware watershed complex that delivers water to New York City, provides a contrast in land cover change. In this region, the Cannonsville watershed condition has improved over a comparable time period. A landscape assessment tool using a geographic information system (GIS) has been developed that automates the parameterization of the Soil and Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS) hydrologic models. The Automated Geospatial Watershed Assessment (AGWA) tool was used to prepare parameter input files for the Upper San Pedro Basin, a subwatershed within the San Pedro undergoing significant changes, and the Cannonsville watershed using historical land cover data. Runoff and sediment yield were simulated using these models. In the Cannonsville watershed, land cover change had a beneficial impact on modeled watershed response due to the transition from agriculture to forest land cover. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response.  相似文献   

4.
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1myr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4x10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings.  相似文献   

5.
为全面认识新安江水资源价值,本文对河流生态系统的各项服务功能开展了定量评价。本文按照联合国千年评估对生态系统的划分方法(供给、调节、文化与支持4项服务),结合新安江流域水生态系统的特征和结构,建立了15项评估指标体系。以2013年为基准年,对新安江水生态系统服务功能及其生态经济价值进行评价。结果显示:新安江水生态系统服务总价值为73.72亿元,其中,提供产品功能价值9.58亿元、调节功能价值11.77亿元、支持功能价值24.13亿元、文化服务功能价值28.24亿元,分别占总价值的13.0%、16.0%、32.7%、38.3%。新安江单位面积提供的生态系统服务价值为0.41亿元/km~2,高于黄山市单位面积GDP产值0.28亿元/km~2。研究认为,新安江流域水生态系统对支持和保护当地经济发展具有重要作用,研究结果以期为新安江水资源有效管理和区域生态环境保护及水环境补偿提供生态学依据。  相似文献   

6.
Abstract: Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient‐reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight‐digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.  相似文献   

7.
Cho, Jaepil, Richard R. Lowrance, David D. Bosch, Timothy C. Strickland, Younggu Her, and George Vellidis, 2010. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):586-602. DOI: 10.1111/j.1752-1688.2010.00436.x Abstract: The Soil and Water Assessment Tool (SWAT) does not fully simulate riparian buffers, but has a simple filter function that is responsive to filter strip width (FILTERW). The objectives of this study were to (1) evaluate SWAT hydrology and water quality response to changes in watershed subdivision levels and different FILTERW configurations and (2) provide guidance for selecting appropriate watershed subdivision for model runs that include the riparian buffer feature through the FILTERW parameter. Watershed subdivision level is controlled by the critical source area (CSA) which defines the minimum drainage area required to form the origin of a stream. SWAT was calibrated on a 15.7 km2 subdrainage within the Little River Experimental Watershed, Georgia. The calibrated parameter set was applied to 32 watershed configurations consisting of four FILTERW representations for each of eight CSA levels. Streamflow predictions were stable regardless of watershed subdivision and FILTERW configuration. Predicted sediment and nutrient loads from upland areas decreased as CSA increased when spatial variations of riparian buffers are considered. Sediment and nutrient yield at the watershed outlet was responsive to different combinations of CSA and FILTERW depending on selected in-stream processes. CSA ranges which provide stable sediment and nutrient yields at the watershed outlet was suggested for avoiding significant modifications in selected parameter set.  相似文献   

8.
We assess the potential financial benefits of rooftop rainwater harvesting (RWH) in Mexico City from the perspective of property owners and entrepreneurs. A bottom‐up approach was followed by evaluating RWH at individual buildings and aggregating the results to a borough/city level. We consider sector‐specific water demands, potable and nonpotable uses, and user‐specific water tariffs. We find that RWH is economically most beneficial for nondomestic users rather than for small domestic users, who are often the target of RWH interventions. Based on a net present value analysis, a potable RWH system is not favored for most domestic users under the current subsidized municipal water tariff structure. Our analysis only considers capital and maintenance expenses, and not other benefits related to increased access to water and reliability, or social benefits from a switch to a RWH system. If the initial capital expense for RWH is partly financed by transferring the water subsidy to an entrepreneur, then RWH becomes financially attractive for a wide range of domestic users. To improve water access in Mexico City, RWH is attractive in the most marginalized boroughs where water use is currently lower and precipitation is higher. For domestic users relying on trucked water, RWH can have great financial benefits. Our approach provides quantitative data with high spatial specificity, highlighting the places and types of users that would benefit most from RWH.  相似文献   

9.
淮河流域蚌埠城市水生态系统服务价值评估   总被引:1,自引:0,他引:1  
根据淮河流域城市水生态系统服务特点,将蚌埠城市水生态系统服务划分为直接使用价值和间接使用价值2大类11个小类,同时建立了一套价值评估指标体系,对2003年蚌埠城市水生态系统服务功能的经济价值进行了评估。结果表明,2003年蚌埠城市水生态系统服务功能的总价值为6.34亿元,占当年城市国内生产总值(109.5亿元)的5.79%,其中航运功能及水资源调蓄功能的价值较高,水质净化功能的价值仅占总价值的0.24%,但该部分价值对维持城市水生态系统健康和其它功能的正常发挥具有积极的支撑作用,对改善城市水环境具有重要意义。  相似文献   

10.
Nonpoint source pollution is the leading cause of the U.S.’s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution.  相似文献   

11.
The Elbow River watershed in Alberta covers an area of 1,238 km2 and represents an important source of water for irrigation and municipal use. In addition to being located within the driest area of southern Canada, it is also subjected to considerable pressure for land development due to the rapid population growth in the City of Calgary. In this study, a comprehensive modeling system was developed to investigate the impact of past and future land-use changes on hydrological processes considering the complex surface–groundwater interactions existing in the watershed. Specifically, a spatially explicit land-use change model was coupled with MIKE SHE/MIKE 11, a distributed physically based catchment and channel flow model. Following a rigorous sensitivity analysis along with the calibration and validation of these models, four land-use change scenarios were simulated from 2010 to 2031: business as usual (BAU), new development concentrated within the Rocky View County (RV-LUC) and in Bragg Creek (BC-LUC), respectively, and development based on projected population growth (P-LUC). The simulation results reveal that the rapid urbanization and deforestation create an increase in overland flow, and a decrease in evapotranspiration (ET), baseflow, and infiltration mainly in the east sub-catchment of the watershed. The land-use scenarios affect the hydrology of the watershed differently. This study is the most comprehensive investigation of its nature done so far in the Elbow River watershed. The results obtained are in accordance with similar studies conducted in Canadian contexts. The proposed modeling system represents a unique and flexible framework for investigating a variety of water related sustainability issues.  相似文献   

12.
Abstract: The effects of natural flow restoration on metals fate and transport in the Upper Tenmile Creek Watershed, Montana, were modeled using the Water Quality Analysis Simulation Program developed by the U.S. Environmental Protection Agency (USEPA). This 50‐km2 watershed has over 150 historic abandoned mines, including mine waste rock and tailings, as well as adits discharging acid mine drainage, and is the primary drinking water supply for the City of Helena. Water supply diversions almost completely dewater some stream reaches during summer low flows, but the city is considering a new drinking water source and restoration of natural flows in Tenmile Creek as part of acid mine drainage remediation and broader aquatic habitat restoration. One dimensional steady‐state simulation of total recoverable cadmium, copper, lead, and zinc in the mainstem was performed, and the model was calibrated to June 2000 base‐flow data. Representative low‐flows in August and high‐flow snowmelt conditions in June were modeled using mean monthly natural flow estimates from the U.S. Geological Survey and representative USEPA metals concentrations data. The modeling showed that total recoverable metals concentrations, and especially loads, can vary significantly among input locations and over time in the watershed. Some data gaps limit evaluation of variability and increase uncertainty in several locations. Model results indicated, however, that natural low‐ and high‐flow restoration by itself can reduce some metals concentrations in the mainstem compared to June 2000 values, which were influenced by significant water diversion. Some values (such as Zn) may still exceed standards during natural August low flow due to the remaining high concentrations and loads in the primary inputs to the mainstem. Others (such as Cu) can increase during high flow due to remaining mine waste sources and loading of particulate Cu associated with erosion and transport of solids. Greater than 50% reduction in concentrations and loads from some of the main tributaries may be necessary to meet all standards, especially for potential particulate loads with higher flows in June.  相似文献   

13.
Patterson, Lauren A., Jeffrey Hughes, Glenn Barnes, and Stacey I. Berahzer, 2012. A Question of Boundaries: The Importance of “Revenuesheds” for Watershed Protection. Journal of the American Water Resources Association (JAWRA) 48(4): 838‐848. DOI: 10.1111/j.1752‐1688.2012.00655.x Abstract: Watersheds transcend jurisdictional boundaries; raising important questions of who should pay for watershed protection, and how can watershed governance be funded? The responsibility and cost for watershed protection has progressively devolved to local governments, resulting in additional negative externalities and financing challenges. Watershed governance structures have formed at the scale of the watershed, but they often lack the financing mechanisms needed to achieve policy goals. Financing mechanisms via local governments provide a reliable source of revenue and the flexibility to address watershed specific issues. We develop a “revenueshed” approach to access the initial challenges local governments face when seeking to finance trans‐jurisdictional watershed governance. The revenueshed approach engages local governments into discussion and implementation of financial strategies for collaborative watershed governance. Legislation places water quality regulations primarily on local governments inside the watershed. The revenueshed approach extends the financial and stewardship discussion to include local governments outside the watershed that benefit from the watershed. We applied the revenueshed approach to the Mills River and Upper Neuse watersheds in North Carolina. Mills River had a partnership governance seeking revenue for specific projects, whereas the Upper Neuse sought long‐term financial stability to meet new water quality legislation.  相似文献   

14.
Land use change can significantly affect the provision of ecosystem services and the effects could be exacerbated by projected climate change. We quantify ecosystem services of bioenergy‐based land use change and estimate the potential changes of ecosystem services due to climate change projections. We considered 17 bioenergy‐based scenarios with Miscanthus, switchgrass, and corn stover as candidate bioenergy feedstock. Soil and Water Assessment Tool simulations of biomass/grain yield, hydrology, and water quality were used to quantify ecosystem services freshwater provision (FWPI), food (FPI) and fuel provision, erosion regulation (ERI), and flood regulation (FRI). Nine climate projections from Coupled Model Intercomparison Project phase‐3 were used to quantify the potential climate change variability. Overall, ecosystem services of heavily row cropped Wildcat Creek watershed were lower than St. Joseph River watershed which had more forested and perennial pasture lands. The provision of ecosystem services for both study watersheds were improved with bioenergy production scenarios. Miscanthus in marginal lands of Wildcat Creek (9% of total area) increased FWPI by 27% and ERI by 14% and decreased FPI by 12% from the baseline. For St. Joseph watershed, Miscanthus in marginal lands (18% of total area) improved FWPI by 87% and ERI by 23% while decreasing FPI by 46%. The relative impacts of land use change were considerably larger than climate change impacts in this paper. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

15.
Role of Adaptive Management for Watershed Councils   总被引:1,自引:0,他引:1  
Recent findings in the Umpqua River Basin in southwestern Oregon illustrate a tension in the rise of both community-based and watershed-based approaches to aquatic resource management. While community-based institutions such as watershed councils offer relief from the government control landowners dislike, community-based approaches impinge on landowners' strong belief in independence and private property rights. Watershed councils do offer the local control landowners advocate; however, institutional success hinges on watershed councils' ability to reduce bureaucracy, foster productive discussion and understanding among stakeholders, and provide financial, technical, and coordination support. Yet, to accomplish these tasks current watershed councils rely on the fiscal and technical capital of the very governmental entities that landowners distrust. Adaptive management provides a basis for addressing the apparent tension by incorporating landowners' belief in environmental resilience and acceptance of experimentation that rejects “one size fits all solutions.” Therefore community-based adaptive watershed management provides watershed councils a framework that balances landowners' independence and fear of government intrusion, acknowledges the benefits of community cooperation through watershed councils, and enables ecological assessment of landowner-preferred practices. Community-based adaptive management integrates social and ecological suitability to achieve conservation outcomes by providing landowners the flexibility to use a diverse set of conservation practices to achieve desired ecological outcomes, instead of imposing regulations or specific practices.  相似文献   

16.
Valuing goods and services from open oceans provides arguments for the ocean's protection and plays an increasingly important role in debates on the use and management of natural resources. This paper identifies and estimates the monetary value of some of the most important goods and services provided by open oceans. The list of goods and services considered includes food production, raw materials, water supply, CO2 regulation, bioremediation of waste, biomass and biodiversity conservation. Therefore, not only values associated with productive uses are quantified but also values assigned to other biological ecosystem services. This paper constitutes a first attempt in the open ocean literature at evaluating services such as water supply, biomass and biodiversity conservation. To obtain their monetary value, different techniques, some not applied before in this area, have been used depending on the ecosystem service to be evaluated. As a general criterion we use the concept of net value added (revenues obtained from the services less incurred costs). Our methodology is illustrated by estimating the monetary values of goods and services provided by the open ocean ecosystem of Spain as defined by its exclusive economic zone. The total economic value obtained measures the contribution of oceans to overall welfare and it may be an important instrument in managing open ocean ecosystems and developing environmental policies in the future.  相似文献   

17.
ABSTRACT: The Watershed Nutrient Transport and Transformation (NTT-Watershed) model is a physically based, energy-driven, multiple land use, distributed model that is capable of simulating water and nutrient transport in a watershed. The topographic features and subsurface properties of the watershed are refined into uniform, homogeneous square grids. The vertical discretization includes vegetation, overland flow, soil water redistribution and groundwater zones. The chemical submodel simulates the nitrogen dynamics in terrestrial and aquatic systems. Three chemical state variables are considered (NO3--, NH4+, and Org-N). The NTT-Watershed model was used to simulate the fate and transport of nitrogen in the Muddy Brook watershed in Connecticut. The model was shown to be capable of capturing the hydrologic and portions of the nitrogen dynamics in the watershed. Watershed planners could use this model in developing strategies of best management practices that could result in maximizing the reductions of nitrogen export from a watershed.  相似文献   

18.
The Phase 5.3 Watershed Model simulates the Chesapeake watershed land use, river flows, and the associated transport and fate of nutrient and sediment loads to the Chesapeake Bay. The Phase 5.3 Model is the most recent of a series of increasingly refined versions of a model that have been operational for more than two decades. The Phase 5.3 Model, in conjunction with models of the Chesapeake airshed and estuary, provides estimates of management actions needed to protect water quality, achieve Chesapeake water quality standards, and restore living resources. The Phase 5.3 Watershed Model tracks nutrient and sediment load estimates of the entire 166,000 km2 watershed, including loads from all six watershed states. The creation of software systems, input datasets, and calibration methods were important aspects of the model development process. A community model approach was taken with model development and application, and the model was developed by a broad coalition of model practitioners including environmental engineers, scientists, and environmental managers. Among the users of the Phase 5.3 Model are the Chesapeake watershed states and local governments, consultants, river basin commissions, and universities. Development and application of the model are described, as well as key scenarios ranging from high nutrient and sediment load conditions if no management actions were taken in the watershed, to low load estimates of an all‐forested condition.  相似文献   

19.
Natural resource professionals are increasingly faced with the challenges of cultivating community-based support for wetland ecosystem restoration. While extensive research efforts have been directed toward understanding the biophysical dimensions of wetland conservation, the literature provides less guidance on how to successfully integrate community stakeholders into restoration planning. Therefore, this study explores the social construction of wetlands locally, and community members’ perceptions of the wetland restoration project in the Cache River Watershed of southern Illinois, where public and private agencies have partnered together to implement a large-scale wetlands restoration project. Findings illustrate that the wetlands hold diverse and significant meanings to community members and that community members’ criteria for project success may vary from those identified by project managers. The case study provides managers with strategies for building community commitment such as engaging local citizens in project planning, minimizing local burdens, maximizing local benefits, and reducing uncertainty.  相似文献   

20.
Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the “Quality Required of Surface Water Intended for the Abstraction of Drinking Water” regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH4+, BOD5, faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO43?, total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号