首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
作为典型的高原坝区农业型流域,洱海流域农业面源污染严重,威胁洱海水质.以洱海流域为研究对象,综合数理分析及GIS技术,开展流域农业面源污染负荷分析及评价,使用排污系数法估算了2018年洱海流域农村生活、畜禽养殖业和种植业污染中COD(化学耗氧量)、TN(总氮)、TP(总磷)的排放负荷,并通过等标污染负荷法在GIS空间分析反映流域内污染排放分布情况.结果表明:①2018年洱海流域农业面源主要污染物COD、TN、TP的排放量分别为11 188.20、2 752.56和259.33 t.COD排放量主要来自畜禽养殖,TN与TP的排放量均主要来自种植业.②洱海流域农业面源主要污染物COD、TN、TP等标污染负荷分别为559.41、2 752.56和1 296.63 m3/a.种植业等标污染负荷在总等标污染负荷中的占比最高,为36.40%,其次是畜禽养殖业,为34.44%.③各乡镇的等标污染负荷差异较大,等标污染负荷范围为(286.16±150.67)m3/a,等标污染负荷强度范围(0.13±0.067)m3/a.④聚类分析结果表明,洱海流域农业面源污染可分为种植业主导型、种植业高污染型、生活污染主导型和畜禽养殖业主导高污染型等4种类型.研究显示:来源于种植业的面源污染是洱海流域水环境保护需要控制的首要污染源,TN是需要控制的首要污染物;排放量与等标污染负荷的空间分布特征均呈流域北部乡镇污染物排放量较高,但流域西部各乡镇排放强度较大的特征;流域内各乡镇防治面源污染需要针对其污染来源特点分别采取推进种养平衡、推广绿色种植、分区控制农田径流以及推进农村生活污水治理等分类控制策略.   相似文献   

2.
洞庭湖农业面源污染排放特征及控制对策研究   总被引:4,自引:0,他引:4  
为明确洞庭湖农业面源污染状况,运用输出系数法和等标污染负荷法分析、评价了洞庭湖区农业面源污染负荷,运用GIS软件绘制面源污染负荷空间分布状况,运用聚类分析划分污染类型,结果表明:2010和2014年洞庭湖区TN、TP年输出负荷总量分别为104556.9t,12719.02t;103643.71t,13032.79t;不同类型污染源产生TN负荷量大小顺序为:旱地水田畜禽养殖农村生活林地,不同类型污染源TP污染负荷量大小顺序为:畜禽养殖旱地水田农村生活林地;农业面源污染负荷主要来源是旱地和畜禽养殖,在空间上TN、TP污染分布一致,但各区域TN、TP年输出负荷量存在差异,以桃源县、汉寿、澧县,鼎城、南县、安化、华容、平江等区域输出负荷量高,是流域优先控制区,并基于聚类分析将ANP划分为4类污染类型,提出控制对策.  相似文献   

3.
沱江流域总氮面源污染负荷时空演变   总被引:6,自引:4,他引:2  
肖宇婷  姚婧  谌书  樊敏 《环境科学》2021,42(8):3773-3784
根据四川省沱江流域水环境受总氮(TN)面源严重污染的现状,采用排污系数法估算2007~2017年该流域来自各面源污染源的TN污染负荷,并利用空间重心统计法和空间分析技术揭示沱江流域TN污染负荷时空分布特征及转移趋势,以期为相关部门精准防控和预警沱江流域面源污染提供理论依据.结果表明,2007~2017年畜禽养殖污染源对整个流域的TN污染负荷贡献率每年均在45%以上,是TN面源污染的主要污染源.农村生活和农村生活垃圾污染源的贡献率呈逐年减少趋势,农田固废和农田径流污染源的贡献率则呈增加趋势.TN总污染负荷总体呈下降趋势,2010年污染负荷最大,达到5.7×104 t,2017年最小,为4.69×104 t.污染负荷在空间上的异质性变化及降雨径流的不均匀分布驱使畜禽养殖、农田固废类和农田径流污染源的TN污染负荷重心由西北向东南方向移动,流域东南部是畜禽养殖、农田固废类和农田径流TN污染的重点防控区域.东南部各区县的农业人口大量向城市人口转化,进而驱动农村生活和农村生活垃圾污染源的TN污染负荷重心由东南向西北方向转移,其转移范围高达66.35 km2,由此确定的最小边界圆是污染源污染负荷变化的重点识别区域,沱江流域西北部则是农村生活和农村生活垃圾TN污染的重点防控区域.本研究拓展了环境科学领域对流域污染负荷时空演变的探究方法,对于改善水环境质量,促进流域经济可持续发展具有重要意义.  相似文献   

4.
以琼江流域(安居段)为研究区,采用输出系数模型对研究区内非点源污染负荷量进行估算,并评估了研究区内蟠龙河等4条子流域的污染情况,以期为河长制"一河一策"方案编制提供参考依据。研究表明:2016年研究区农村非点源TN、TP输出负荷量分别为3 319.98,220.5 t,TN负荷主要来源于农业面源,贡献率为54.41%;TP负荷主要来源于农村生活和畜禽养殖污染源,二者总贡献率达74.37%。4个子流域中,蟠龙河流域、石洞河流域主要污染源为农业面源和农村生活污染,玉丰河流域和会龙河流域主要污染源为畜禽养殖和农业面源污染。  相似文献   

5.
基于DPeRS模型的海河流域面源污染潜在风险评估   总被引:4,自引:3,他引:1  
运用DPeRS(diffuse pollution estimation with remote sensing)模型对海河流域面源污染物的空间分布特征和污染来源进行遥感像元尺度解析,结合地表水质评价标准,构建了面源污染潜在风险分级方法,评估了海河流域面源污染潜在风险.结果表明:污染量上,海河流域总氮(TN)、总磷(TP)、氨氮(NH4+-N)和化学需氧量(COD)面源污染排放负荷分别为429.2、25.7、288.3和1017.0 kg ·km-2,入河量分别为2.5万t、1597.2 t、1.7万t和6.6万t;污染类型上,农田径流是海河流域最主要的氮磷型(TN、TP和NH4+-N)面源污染源,对于COD指标,城镇生活是首要污染类型,其次为畜禽养殖;空间分布上,海河流域中部和南部地区面源污染负荷较高,此区域也是该流域面源污染高风险集中分布区,氮磷型面源污染高风险区域分布相对较为集中,化学需氧量型则较为零散;海河流域有36%以上的区域存在氮磷型面源污染风险,有2.94%的区域存在化学需氧量型面源污染风险.  相似文献   

6.
研究了中国北方某流域不同污染源的污染贡献,结果表明:COD贡献量点源为719.21 t,农业面源污染为7 488.02 t,农业面源污染是该流域水环境污染的主要来源.农业面源污染物等标污染负荷总量为8 359.44×106 m3/a.不同污染源污染贡献比例:农田化肥占49.24%、畜禽养殖占35.10%、农村生活占14.69%、农作物秸秆仅占0.97%.污染物贡献量比例.TN占56.46%、TP占39.06%、COD仅占4.48%.  相似文献   

7.
以松华坝水库为研究对象,对水库水源区污染负荷产生量和入库量进行估算,结果表明:水源区各种污染源产生的负荷量为:TN=527.41t/a,TP=144.24t/a。畜禽粪便是流域氮磷非点源污染的最大产生源。各污染源产生的TN负荷量排列为:畜禽粪便>农业固废>生活垃圾>化肥流失>水土流失>生活污水;TP负荷量情况排列为:畜禽粪便>农业固废>化肥流失>水土流失>生活垃圾>生活污水。  相似文献   

8.
阳宗海外源氮磷负荷入湖量分析   总被引:1,自引:0,他引:1  
湖泊的氮、磷入湖负荷解析是湖泊富营养化防治的前提,为有针对性地采取治理措施提供依据。在对阳宗海流域的工业废水、城镇和农村生活污水、外流域引水、化肥施用量、畜禽养殖、农业固废和生活垃圾等进行全面调查的基础上,测算了2010年流域内各污染源的总氮(TN)和总磷(TP)入湖负荷。结果显示:阳宗海流域2010年TN入湖量为293.30 t,TP为40.11 t;污染源以面源为主,面源TN和TP分别占其总入湖量的78.9%和95.5%;最大污染源为化肥,肥料氮和磷入湖负荷分别为1 33.66、26.10 t,分别占其总入湖量的45.6%和65.1%,减少化肥的使用是湖泊富营养化防治的关键;以磷负荷所占比例排序,畜禽粪便为其次,再次是农村生活污水,二者贡献的磷负荷分别占总入湖量的16.1%和1 2.5%,所贡献的氮负荷分别占总入湖量的8.1%和23.6%;外流域引水贡献的TN和TP分别占其总入湖量的19.8%和3.5%;阳宗海为磷限制湖泊(N:P为20.4:1),但输入负荷中N:P为7.3:1,磷的占比较高,因此富营养化风险高。  相似文献   

9.
以黄河三角洲为典型研究区,通过分析区域地表污染物流失风险与入海通量的关系,构建了海岸带农业总氮(TN)和总磷(TP)面源污染排海估算模型.在此基础上,计算了包含水田、水浇地和旱地等耕地类的TN和TP面源污染排海系数,验证表明输出系数估算结果较好.研究区耕地的TN和TP排海系数分别为18.33 kg·(hm2·a)-1和1.02 kg·(hm2·a)-1,在夏季面源污染负荷较高.子流域尺度较大的耕地类农业面源污染负荷主要位于支脉河、广利河和小岛河管控区域.TN和TP总负荷较大的行政区主要位于北部黄河口镇和永安镇;较大的单位面积负荷在西南部.因此,需要关注农业面源污染的时间效应,同时协调社会经济发展,从子流域和行政单元的角度制定综合性面源污染防控策略,陆海统筹治理海域污染.  相似文献   

10.
为研究东江源头区农业面源氮磷负荷情况,利用改进的输出系数模型(ECM)对2020年东江源头区农业面源氮磷排放特征进行了探讨.结果表明:(1)东江源头区农业面源污染物总氮(TN)和总磷(TP)负荷量分别是4884.23t/a和591.85t/a, TN污染负荷是TP污染负荷的8.25倍,其中高于源头区TN平均负荷量的乡镇依次为留车镇、文峰乡、晨光镇、南桥镇、吉潭镇、丹溪乡和澄江镇,高于源头区TP平均负荷量的乡镇依次为晨光镇、留车镇、南桥镇、文峰乡、丹溪乡、菖蒲乡和吉潭镇.(2)氮磷污染负荷强度与负荷量不同,且表现出一定的空间差异性.污染负荷量较高分别为留车镇和晨光镇,但负荷强度最高分别为南桥镇和菖蒲乡.TN负荷强度较高的依次为南桥镇、菖蒲乡、晨光镇、留车镇和项山乡,均高于源头区TN平均负荷强度2.88t/(km2?a);TP负荷强度较高的依次为菖蒲乡、南桥镇、晨光镇、丹溪乡、留车镇和罗珊乡,均高于源头区TP平均负荷强度0.36t/(km2·a).(3)不同污染源类型对氮磷排放的贡献率不一致,TN污染表现为土地利用>农村生活>畜禽养殖,TP污染表现为畜禽养...  相似文献   

11.
近20年来广东省农业面源污染负荷时空变化与来源分析   总被引:1,自引:0,他引:1  
广东省农业面源污染负荷产生量大,对区域生态环境造成严重影响.采用清单分析法分析了近20年(1999~2019年)广东省农业面源污染负荷时空变化特征,探讨了农业面源污染的来源情况,并分析了农业生产投入强度、农业面源污染负荷和农业面源污染指标的关系.结果表明,近20年广东省农业面源污染总负荷下降6.08%,其中化学需氧量(COD)、总氮(TN)和总磷(TP)的污染负荷增幅分别为-11.88%、 4.99%和26.17%,耕地化肥和农药投入强度分别上升112.19%和60.38%.珠三角地区是广东省农业面源污染负荷最高的地区,其次分别是粤北、粤西和粤东地区.畜禽养殖是COD的主要来源,化肥和畜禽养殖是TN的主要来源,畜禽养殖和水产养殖是TP的主要来源,且水产养殖污染物排放占比呈现出明显上升趋势.不同区域的污染物来源存在一定差异,粤西、粤北和粤东地区COD和TP主要来源是畜禽养殖,TN的主要来源是化肥;珠三角地区水产养殖业成为TN和TP污染负荷的主要来源.广东省面源污染负荷总量下降主要源于城镇化水平的提高和农村人口比例减少.总体而言,广东省面源污染存在时间阶段性变化与空间差异,应当采取全面治理...  相似文献   

12.
淮河流域农业非点源污染空间特征解析及分类控制   总被引:12,自引:2,他引:10  
农业非点源污染是导致流域水质恶化的重要原因,识别流域内关键源区并加以重点控制是流域非点源污染治理的最有效手段.以淮河流域为研究对象,采用清单分析法核算了流域173个县(市、区)的畜禽养殖、农村生活、农田种植、水产养殖4种污染源化学需氧量(COD)、总氮(TN)、总磷(TP)排放量和排放强度.利用SPSS和GIS软件对污染排放强度进行聚类分析、敏感性评价及空间解析,解析出流域非点源污染的敏感地区、重点污染源及其空间分布特征,并依据污染源贡献大小对流域进行分类控制.结果表明,2009年淮河流域农业非点源COD、TN、TP排放量分别为206.74×104t、66.49×104t、8.74×104t;排放强度分别为7.69、2.47、0.32 t·hm-2;COD、TN、TP排放比重分别为73%、24%、3%.识别出COD、TN、TP的主要贡献污染源为畜禽养殖和农村生活;解析出淮河上游沙河、颍河、北汝河、贾鲁河以及清潩河等子流域为整个流域非点源污染的敏感区和优先控制区,畜禽养殖为流域优先控制区中的重点污染源.畜禽污染型和综合污染型分别是流域污染贡献率最高和控制难度大的污染类型.  相似文献   

13.
山东省南四湖流域农业面源污染状况分析   总被引:4,自引:0,他引:4       下载免费PDF全文
黄亚丽  张丽  朱昌雄 《环境科学研究》2012,25(11):1243-1249
以探明山东省南四湖流域农业面源污染状况为目的,在对流域内农村人口、畜禽养殖规模、农田施肥量、水产品产量等数据调查的基础上,结合全国第一次农业污染源调查结果中的农业源产、排污系数,测算出2009年山东省南四湖流域内农村生活、农田化肥、畜禽养殖业、水产养殖业等4个方面CODCr、TN、TP的排放总量分别为192 278.71、103 126.04、6 990.82 t. 通过分析得出,在山东省南四湖流域农业面源污染中的CODCr主要来自农村生活,占CODCr排放总量的56.44%;农田化肥TN的流失占TN排放总量的48.37%,农村生活和畜禽养殖对TN排放总量也有较高的贡献;畜禽养殖业是TP的主要来源,占TP排放总量的65.06%;水产养殖对各项污染物的贡献率相对较低,但不容忽视.   相似文献   

14.
三峡库区面源污染的时空特征及EKC分析   总被引:2,自引:0,他引:2  
在全面核算2008~2018年三峡库区19个区县农业面源污染TN、TP排放量的基础上,分析了其时空变化特征.基于环境库兹涅茨曲线(EKC)理论,构建了基于面板数据的回归模型,探究了库区农业经济发展与面源污染排放强度的演替关系.结果显示,库区农业TN排放波动减少,TP波动增加.各区县的TN和TP年均排放量分别在374~6046t和105~1267t之间.其中,农田化肥与畜禽养殖单元的总产污贡献率达80%以上.库区TN排放强度、畜禽养殖与农村生活单元的TN、TP排放强度均存在显著的"倒U型"EKC关系,目前已跨越拐点.农田化肥TP排放强度、水产养殖与农田固废单元的TN、TP排放强度呈现显著的"直线型"EKC关系,处于与经济同步增长的阶段.建议重点升级农田化肥单元的污染防控能力,以配套推进农村人居环境的改善,促进区域氮磷减排.  相似文献   

15.
生态工程综合治理系统对农业小流域氮磷污染的治理效应   总被引:5,自引:4,他引:1  
以典型农业小流域——开慧河流域源区为研究对象,基于研究区农业面源污染的主要排放特征,建立以生态湿地为主的小流域面源污染生态工程综合治理系统,重点探讨其对水体氮磷污染物的去除效果.结果表明,畜禽养殖业是开慧河流域源区水体氮磷污染物的主要来源,需要重点防控.组合生态湿地处理工程对农村分散式生活与养殖混合废水总氮(TN)、总磷(TP)的平均去除率为87. 1%和90. 9%;多级人工湿地拦截工程对农田排水与分散式养殖混合废水TN、TP的平均去除率为85. 7%和84. 9%;景观型生态湿地净化工程对末端汇水区水体中TN、TP的去除率在27. 1%~67. 4%和13. 3%~81. 5%之间.整个生态工程综合治理系统对流域TN和TP污染物的总拦截量分别为5 292 kg·a~(-1)和1 054 kg·a~(-1),占研究区农业面源TN、TP总污染负荷的35. 3%和43. 6%.因此,构建的生态工程综合治理系统对流域农业面源氮磷污染具有较好的治理效应,适合在我国南方小流域水环境治理中推广应用.  相似文献   

16.
非点源污染河流的水环境容量估算和分配   总被引:6,自引:2,他引:4  
陈丁江  吕军  金树权  沈晔娜 《环境科学》2007,28(7):1416-1424
通过河流相应集水区内氮磷的各污染源分析(包括农地、畜禽养殖和生活排污等),利用输出系数模型估算各非点源的氮磷投(排)放量和入河量;采用河段氮磷输入-输出平衡关系分析方法,估算河流对氮磷的每月自净量.以此为基础,参照水功能区划所要求的水质目标,提出了水质未超标河段相应集水区的氮磷剩余水环境容量按月估算模型,和水质超标河段相应集水区内氮磷投放削减量的按月估算模型,及其在各污染源之间的分配方案.结果表明,长乐江的总氮和总磷自净量分别达到775.9 t·a-1和30.9 t·a-1,自净率分别为28.8%和51.2%.河流对氮磷的自净量不仅受水文生态条件的影响而表现出较大的季节性变化,而且随着污染负荷量本身的增加而提高.按照水功能区划中Ⅲ类水的水质要求,长乐江总氮含量全年超标;各非点源的总氮投(排)放量均须不同程度的削减,削减总量应达到1 581.0 t;氮源削减量分配结果表明,化肥是应削减的最大氮源,要求在河流相应集水区内的化肥氮投放削减量为1 047.4 t·a-1;而与各种氮源的投排放现状相比,要求削减比例最高的是畜禽养殖的氮排放量,达32.4%.长乐江流域尚有一定的总磷剩余水环境容量(2 335.7 t·a-1).根据目标水质要求,平水期是各污染源总氮投放需要削减的量最大的时期,丰水期则是总磷剩余水环境容量最小的时期.  相似文献   

17.
非点源污染是水污染的重要来源之一,揭示非点源污染负荷空间分布特征、筛选并布设最佳管理措施(best management practices,BMPs)对水污染的高效治理有至关重要的意义. 北运河作为北京市重要的排水通道和连接京津冀的重要生态走廊,加强北运河上游非点源污染治理对北运河流域的水质改善至关重要. 然而,当前缺乏针对非点源污染关键源区内布设不同BMPs生态效益评价的研究. 因此,为了解析北运河上游非点源污染空间分布特征,评估关键源区布设不同措施的生态效益,本文基于SWAT模型定量模拟了2019年北运河上游总氮、总磷负荷空间分布特征,并采用单位负荷指数法识别了非点源污染关键源区,同时评估了关键源区布设不同BMPs的总氮、总磷削减效果. 结果表明:①2019年北运河上游流域产生的总氮、总磷负荷分别为126 444.22和12 394.76 kg,呈东南高西北低的空间分布特征,主要来源于城镇用地、耕地和果园等地类. ②北运河上游关键源区分布在东南部17条子流域,占流域总面积的13.16%,产生的总氮、总磷负荷分别占全流域的39.16%和38.10%. ③1/5面积比植被缓冲带的总氮、总磷削减率最高,分别为38.20%和40.37%;2 km河道植草的总氮、总磷削减率最高,分别为19.47%和50.90%;由于关键源区范围内农地面积较小(9.62%),化肥减施措施下污染物削减较低. 研究显示,非点源污染关键源区主要分布在人类活动较多的流域东南部,可通过布设合适的植被缓冲带和河道植草措施,降低关键源区非点源污染负荷.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号