首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
北京电动出租车与燃油出租车生命周期环境影响比较研究   总被引:3,自引:2,他引:1  
燃油机动车尾气排放是导致城市包括雾霾在内的大气环境问题的主要来源之一.以电动汽车替代传统燃油车是当前各国解决城市大气污染问题的重要举措.北京于2011年启动了电动出租车推广计划.为比较北京市迷迪电动汽车和现代燃油车生命周期的环境影响,运用生命周期评价方法,基于Ga Bi4.4软件,选用CML2001和EI99影响评价模型对两款车的生产、使用和报废回收全生命周期过程的环境影响进行了定量评价,并针对汽车报废里程和电力能源结构进行了敏感性分析.结果表明,从全生命周期视角,根据EI99评价模型,迷迪电动汽车环境影响总体上优于现代燃油车,尤其在削减化石能源消耗方面优势凸显,但在生态系统质量影响及人体健康影响方面却略有增大的趋势;利用CML2001模型对比分析得出迷迪电动汽车比燃油出租车在对非生物资源消耗、全球变暖以及臭氧层损耗等方面有明显改善;但在生产阶段尤其是动力系统生产方面在非生物资源消耗、酸化、富营养化、全球变暖、光化学臭氧合成、臭氧层损耗、生态毒性等生态环境影响却均有增大趋势.使用阶段电力生产是迷迪电动汽车非生物资源消耗、酸化、富营养化、全球变暖、光化学臭氧合成、生态毒性等环境影响的主要来源;而现代燃油出租车使用阶段的环境影响主要来源于尾气排放和汽油生产,其中尾气排放是造成现代燃油车在富营养化和全球变暖等方面影响潜值较大的主要原因;基于清单数据库,针对致霾因子影响分析得出,在2010年北京市电力能源驱动下,迷迪电动车明显增加了超细颗粒物(PM2.5)、氮氧化物(NOx)、硫氧化物(SOx)、挥发性有机物(volatile organic compouds,VOCs)等因子的全生命周期的排放,而同时降低了氨气(NH3)的排放量,使用阶段排放的差别是造成上述趋势的主要原因.对关键因素敏感性分析发现,随着报废里程以及清洁能源比例的增加,迷迪电动汽车相对现代燃油车的单位里程碳减排量呈现增加的趋势.清洁电力能源的使用可大幅降低迷迪电动汽车致霾污染物的排放量.根据分析结果,为北京市电动车的推广提出了对策建议.  相似文献   

2.
文章以灰色关联分析的理论与方法为基础,分别将江苏全省SO2排放量、工业烟(粉)尘排放量、工业废气排放量和工业固体物产生量作为因变量参考数列,江苏省地区生产总值、发电总量、火力发电量、火力发电量占发电总量比重作为比较数列,对电力发展与环境变化进行综合分析,结果表明火力发电对环境变化影响较大.因此,积极发展新能源发电项目,扩大新能源发电比重,降低火力发电比重,构建合理的能源结构成为江苏省环境保护的重中之重.  相似文献   

3.
沈万霞  张博  丁宁  王薛超  卢强  王成 《环境科学学报》2017,37(11):4409-4417
基于中国本地化的环境负荷数据,建立了电动汽车全生命周期模型,深入分析和评估了电动汽车生产和运行两个阶段的能耗及温室气体排放(Greenhouse gases,GHGs).结果表明:电动汽车生产和运行过程的总能耗为474 GJ;GHGs为40500 kg(以CO2当量计),电动汽车生产和运行过程的GHGs分别占总排放量的23.5%和76.5%.对于电动汽车生产过程能耗和GHGs而言,原材料生产均为主要贡献者,GHGs占到车辆生产过程的74.6%,占生命周期的17.5%.另外,情景分析表明,再生材料应用、单位电力GHGs和百公里电耗能够在很大程度上影响电动汽车的碳排放.再生金属替代原生金属后,从情景1到情景5,车辆生产的GHGs下降了约22.2%,车辆生产和运行过程的总GHGs下降了约4.7%;单位电力GHGs每下降1%,电动汽车运行GHGs下降0.9%;电动汽车百公里电耗每下降1.0%,车辆生产和运行过程总GHGs下降约1.0%.因此,发展清洁能源、降低火力发电比例、优化原材料生产工艺、提高再生原材料用量等,是有效降低电动汽车全生命周期过程总能耗和GHGs的重要途径.  相似文献   

4.
私人电动汽车因具有较少碳排放,在替代传统燃油汽车、推动交通领域碳减排方面具有广阔的应用前景.为更准确地衡量私人电动汽车相对于传统燃油汽车的碳减排效果,采用生命周期评价方法构建基于碳减排量和碳减排率的私人电动汽车碳减排核算技术方法,并通过情景分析技术模拟我国不同省份私人电动汽车碳减排潜力及关键影响因素.结果表明:①相对于传统燃油汽车,私人电动汽车在火力发电比例较低的13个省份具有较好的碳减排效果,减排率为34.69%~70.69%;在火力发电比例较高的18个省份减排效果则不太明显,减排率仅为3.20%~31.40%.②在私人电动汽车全生命周期的各阶段中,中低减排省份的燃料周期碳排放量占比最高,为57.33%~80.91%,且随着该省份碳减排效果的改善而不断降低;受制于电池的生产,高减排省份私人电动汽车全生命周期最主要的碳排放阶段为汽车材料周期.③从碳减排影响因素上看,汽车报废里程的增加对私人电动汽车碳减排量具有明显的正影响,但对碳减排率影响不大,碳减排效果较好的省份的碳减排量随报废里程的增加而上升的趋势更明显;百公里电耗的升高和车质量的增加则使碳减排效果下降,在碳减排效果较差的省份百公里电耗水平对碳减排量和碳减排率均有更显著的影响.研究显示,私人电动汽车的推广在我国可以带来一定的碳减排效果,发电能源结构和车质量是影响碳减排效果的2个关键因素,不同省份应因地制宜制定差异化的私人电动汽车推广路径.   相似文献   

5.
我国城乡住宅建筑物化阶段碳排量现状与趋势分析   总被引:2,自引:1,他引:1       下载免费PDF全文
白静  曲建升  韦沁  曾静静 《环境工程》2016,34(10):161-165
建筑作为三大高耗能产业之一,研究其碳排放对社会经济、生态可持续发展具有重要意义。综合分析我国城镇、农村人口数量、人均住宅建筑面积的发展趋势,对2012—2050年城乡住宅面积进行预测。结合国内外文献,将建筑物化阶段碳排放源分为建材、运输、现场施工3个方面,得到剪力墙结构、钢混框架结构和砖混结构建筑在物化阶段的单位面积碳排放量。计算得到2012—2050年我国城乡新建住宅建筑面积及其物化阶段的碳排放趋势。城镇新建住宅建筑物化阶段碳排量远胜于农村,其达峰节点迟于农村。合理控制住宅建筑增加速度、延长建筑使用年限可有效减少住宅建筑物化阶段碳排量;使用绿色低碳建材和清洁能源,提高施工机械效率是低碳建筑物化阶段的研究重点。  相似文献   

6.
电力作为一种二次能源,不同发电方式和发电技术的电力CO2排放系数差别很大。研究发现,上海市2009年电力消费侧的CO2排放高于电力生产侧1 551万t,即上海市净调入电力的CO2排放为1 551万t,可见外来电CO2排放的正确测算对全市及各终端消费部门的CO2排放有重要影响。从排放系数来看,消费侧的CO2排放系数只有生产侧排放系数的81%,得益于外来电中可再生能源比例高于本地电力。2009年由于外来电的引入,上海市电力消费避免了178万t的CO2排放。就火力发电而言,上海市单位发电能耗和CO2排放略低于华东电网平均值,远高于世界先进水平,还有很大下降空间。基于以上研究,从提高火力发电的能效、发展可再生能源、发展分布式供能和其他新能源技术、建设智能电网等方面提出上海市减缓电力CO2排放的途径。  相似文献   

7.
为了优化电力系统并促进节能减排,将不确定性优化方法与区域电力系统模型相结合进行电力系统规划:以系统成本最小化作为目标函数;参考国家相关政策与标准设置资源量、电力供需平衡、排放限值等约束;对各发电技术发电量、外购电量、CO_2及大气污染物排放总量进行最优化;为了探讨征收排放税的减排效果以及可行性,设置对电力系统征收大气污染物排放税和碳税进行相应的情景分析.研究以淄博市作为实例,在淄博的电力系统规划中,情景1中违反系统约束概率的增大会使最优火力发电量增加,在3个情景中,清洁能源发电量均能达到占总电力需求量10%的目标;而外购电将主要作为保证电力系统安全平稳运行的补充;情景1中违反系统约束概率为0时SO_2,NO_x和烟尘的排放限值在所有情景中为最低,即淄博市现行的排放限值标准将会得到更好的减排效果,并且其他情景下的系统成本将显著增加.因此,基于对淄博市的案例研究结果可知,对于电力系统征收排放税并不具有必要性.  相似文献   

8.
选取IPCC碳排放核算方法并基于能源统计数据,核算了我国大陆30个省市的能源消耗碳排放量,利用纠正后的DMSP/OLS夜间灯光数据与相应空间单元的碳排放量进行回归分析,反演出1km×1km栅格的电力消耗碳排放量并分析其在地级市尺度上的时空变化.核算出2005年、2010年和2013年能源消耗排放总量分别为57.02,82.28和93.26亿t,其中电力碳排放量分别为23.03,35.62和42.07亿t.结果表明:校正后的DMSP/OLS夜间灯光数据能更好地估算碳排放,其DN总值与统计的省级能源消耗排放量、电力消耗排放量均存在较强的相关关系;整体而言,发达地区能源消耗排放量大但强度比较低.  相似文献   

9.
宋宁  张凯山 《环境科学学报》2013,33(12):3391-3398
针对我国城市能源供需矛盾日益恶化、环境污染日益严重的现状,优化城市机动车能源结构,缓解城市机动车对传统能源的使用压力,减少尾气排放,具有十分重要的意义.因此,本文以成都市为例,采用线性优化技术,通过确定各种车用能源生命周期内的能源消耗及排放、各种能源车辆的经济成本等,分析得到成都市整个城区范围内能耗最低、排放最小的各种能源机动车数量比例.结果表明,成都市各种能源机动车的数量比例随所选目标函数的不同而有所变化.为实现总能耗最小,各种能源机动车的比例按汽油、柴油、纯电动、电力/汽油混合动力、CNG单燃料、CNG/汽油双燃料、LPG单燃料、及LPG/汽油双燃料等划分应分别68.6%、11.4%、3.7%、6.1%、5.0%、5.0%、0.1%、0.1%.与机动车数量比例优化前相比,优化后总能源消耗量、石油消耗量分别平均减少了11.5%、13.8%.除PM10及SOx排放量有所增加外,其他气体的排放均有所减少,如CO2、VOC、CO及NOx的平均排放量分别减少了10.6%、13.5%、13.5%及16.5%.这是因为机动车能源结构优化后,纯电动汽车及混合燃油汽车的比例有所增加,由于这两类汽车都需要经常充电从而增加了电网的压力.而我国发电技术主要采用火力发电,发电过程将会产生大量的PM10及SOx.本研究的成果可用于环境决策者制定有效的交通能源政策,达到城市可持续发展的目的.  相似文献   

10.
黎水宝  程志  王伟  柳杨  王廷宁 《环境工程》2015,33(12):130-133
二氧化碳排放核算是控制温室气体排放、应对气候变化的基础性工作。基于宁夏能源平衡表,采用《省级温室气体清单编制指南(试行)》推荐的化石燃料燃烧二氧化碳排放核算方法,对宁夏2005—2012年能源消费二氧化碳排放量进行了核算与分析。基于能源平衡表的核算结果,明显低于前人以能源消费总量核算的二氧化碳排放量,主要是因为基于能源平衡表可以剔除大量计入了能源消费总量、但未被氧化排放二氧化碳的能源消费,若不剔除,可使宁夏工业能源消费二氧化碳排放量偏高近50%。火力发电二氧化碳排放占宁夏能源消费二氧化碳排放的50%以上,原煤是二氧化碳排放最大能源品种;大规模电力外送导致宁夏近年二氧化碳排放量激增,同时也使能源消费二氧化碳排放量与能源消费量变化不同步。  相似文献   

11.

In China, the power industry contributes significantly to carbon emissions, reducing carbon emissions in this industry is conducive to China's adaptation and mitigation of climate change. Researches on green and low-carbon power have attracted increasing attention. In this paper, we analyze and compare the carbon emissions from thermal power sector in 30 Chinese provinces, divided into three main regions. Based on the panel data over the period 2002–2016, we use a slacks-based measurement (SBM) model to measure the carbon emission efficiency of China’s power sector. The results show that the carbon emission efficiency of the system is relatively low, with marked differences among regions. Based on the Moran’s I, we further found spatial heterogeneity in carbon emission efficiency of provincial power sector. Policies for adaptation and mitigation of climate change should have regional differences. Interregional collaboration also plays a key role in adapting to and mitigating climate change. For China, it is an important issue to develop clean coal-fired power generation and vigorously develop renewable energy. From a global perspective, energy transformation needs to be continuously promoted. Promoting low-carbon transformation of global energy system requires deep technical cooperation and synergy. Global mitigation strategy should focus on the orientation of structural reform and constantly optimize the energy structure.

  相似文献   

12.
中国电网火电比例的空间差异与插电式混合动力汽车(PHEV)驱动能源的二元性增加了研究PHEV二氧化碳排放的复杂性.使用上海市50辆PHEV汽车13万km的数据,研究了基于PHEV实际运行数据的二氧化碳排放评估方法,分析了PHEV纯电驱动里程比例及其影响因素,获得了纯电续驶里程、充电频率、电网构成对PHEV二氧化碳排放强度的影响,展望了2020年PHEV技术水平的二氧化碳减排效果.结果表明,我国一线城市PHEV乘用车出行主要集中在50 km以内的范围,占日常出行频次的70%;在2016年全国平均电网结构下,续驶里程超过50 km的PHEV比传统燃油车少排放15%以上的二氧化碳;在高比例可再生能源电网结构的地区,PHEV碳排放可降至100.0 g·km-1以下,相比平均电网结构下碳排放水平降低幅度在28%以上;在2016年平均电网结构及技术水平下,纯电续驶里程增加(50~100 km)、充电频率增加(0.5~2次·d-1)对碳排放的改善幅度不明显;与2016年相比,2020年PHEV燃油经济性和电耗水平的改善可降低32%的碳排放.  相似文献   

13.
电动与内燃机汽车的动力系统生命周期环境影响对比分析   总被引:3,自引:2,他引:3  
以国内某两款同一车型的电动与内燃机汽车的动力系统为研究对象,通过生命周期分析软件GaBi建立生命周期评价(LCA)模型,在清单数据分析的基础上,采用CML2001模型对两种动力系统分别进行了定量的生命周期环境影响评价.评价结果表明,电动汽车动力系统的全生命周期综合环境影响比内燃机汽车动力系统高60.15%,并分别通过回收阶段分析、电能结构分析和敏感性分析对这一结果进行了解释:回收阶段中酸化、富营养化和光化学臭氧合成3种环境影响类型的直接排放大于回收得到的环境效益;电动汽车动力系统的环境影响随着火力发电比例的下降而减小,增大水能、风力和核能发电在电力系统中所占比例能有效降低电动汽车对环境的影响;动力系统重量对电动汽车动力系统的环境排放影响最为敏感,电池充电效率次之,制造阶段能耗的敏感度最小.将动力系统使用阶段的环境影响分配到整车,则电动汽车的生命周期环境影响比内燃机汽车低0.14%,且主要环境影响类型是全球变暖、酸化和富营养化.  相似文献   

14.
李辉  庞博  朱法华  孙雪丽  徐静馨  王圣 《环境科学》2022,43(11):5294-5304
选取2020年世界能源消费量累积占比达80%的前23个国家作为研究对象,通过从一次能源清洁化率、化石能源清洁利用率和电能占终端能源消费率角度对其能源消费结构进行对比研究,从单位GDP能耗、人均能耗和单位国土面积能耗角度,结合产业结构和分部门能源消费构成,对其能源消费强度进行深入分析,探讨各国在社会经济运行与生产生活中的能源消费模式,提出能源消费自然碳汇承载负荷比概念,指出我国在碳达峰与碳中和目标下能源消费模式转型面临的优势与挑战.结果表明,我国一次能源清洁化率、发电用能占比、化石能源清洁化利用率和电能占终端能耗比分别达到15.90%、53.48%、37.51%和26.54%,均在世界主要能源消费国家中处于前列,已经架构起良好的能源集约化和清洁化利用结构基础;非工农业能源消费占比尤其是仅为14.09%的交通能源占比在主要能源消费国中最低,已经形成了具有相对优势的绿色低碳能源消费模式;基于产业结构优化潜在的总体能源生产率还有较大提升空间;但相对较短的碳达峰与碳中和目标期对清洁能源发展速度与规模提出了巨大挑战,碳排放约束下的国际形势对我国通过优化调整产业结构实现降碳目标也增加了难度.  相似文献   

15.
低碳交通电动汽车碳减排潜力及其影响因素分析   总被引:13,自引:4,他引:9  
交通运输是城市能源消耗和碳排放的重点行业,为通过节能减排实现低碳城市发展目标,传统汽油车向新能源汽车的转型是一项重要的举措,其中电动汽车因其节能减排的优势将在这次转型中发挥重要作用.在全面总结现有电动汽车节能减排研究成果的基础上,分析了影响电动汽车的减排因素,并应用燃料生命周期的理论,结合北京市的电动汽车推广计划,以纯电动汽车为例,采用改进的燃料碳排放模型,并设置6种情景分析了电动汽车的碳排放及其减排潜力,包括发电能源结构、车用燃料类型(单位燃料的CO2排放系数)、汽车类型(百公里能耗)、城市交通状况(时速)、煤电发电技术、电池类型(重量、能效)等因素对电动汽车减排潜力的影响.结果表明,改进后的模型能更科学测算燃料消耗碳排放;纯电动汽车具有明显的制约性碳减排潜力,在分析的6种影响因素中其波动幅度为57%~81.2%,其中,发电能源结构和煤电技术供电路线对电动汽车燃料生命周期碳减排空间起决定性作用,其减排空间分别可达78.1%及81.2%.最后从改善能源结构、提高煤电技术、推广节能技术、加快动力蓄电池研发、推广纯电动汽车等方面提出了推广电动汽车降低交通能耗和碳排放的优化措施,以期为低碳交通新能源汽车转型政策的制定提供科学依据和方法支撑.  相似文献   

16.
向梦宇  王深  吕连宏  张楠  白梓函 《环境科学》2023,44(7):3637-3648
当前我国同时面临改善生态环境质量和实现碳达峰碳中和两大战略任务,协同推进减污降碳已成为我国经济社会发展全面绿色转型的必然选择,电力部门在转型过程中将发挥重要作用.面向不同的电力需求情景,构建低成本实现碳达峰、碳中和的多目标模型,求解得出减污降碳协同增效最优路径方案.结果表明,在如期实现碳达峰、碳中和目标的前提下,减污和降碳协同性较好,两者协同控制可高效助力低碳转型的实现;优化电力部门发电结构是实现减污降碳协同增效的关键措施,研究期火电占比不断下降,清洁电力占比超过92.5%;不同电力需求下二氧化碳和主要大气污染物排放量有明显差异,其中二氧化碳排放量受电力需求影响最大,低电力需求、中等电力需求和高电力需求情景下峰值二氧化碳排放量分别为94.16亿、 104.09亿和107.46亿t,主要污染物二氧化硫、氮氧化物和颗粒物的排放同样表现出在低电力需求、中等电力需求和高电力需求情景下依次递增的趋势.电力需求的提高仅增加了电力部门内部发电结构调整的压力,未影响到其他部门的产量和活动水平,即电力需求导致的电力部门减排压力未表现出部门间传递的趋势.  相似文献   

17.
俞珊  张双  张增杰  瞿艳芝  刘桐珅 《环境科学》2023,44(4):1998-2008
将能源、建筑、产业和交通作为减污降碳重点领域,设置了基准情景、政策情景和强化情景,以2020年为基准年,2035年为目标年,开展北京市大气污染物和CO2减排潜力测算,并构建了一种协同控制效应分级评估方法,对政策情景和强化情景下大气污染和CO2协同控制效应进行量化评估.结果表明,与基准情景相比,政策情景和强化情景下大气污染物减排率分别在11%~75%和12%~94%,CO2分别为41%和52%.优化机动车结构对于NOx、 VOCs和CO2的减排贡献最大,政策情景下减排率分别达到74%、 80%和31%,强化情景下分别达到68%、 74%和22%;完成农村地区散煤清洁能源改造对SO2的减排贡献最大,政策和强化情景下分别达到47%和35%;提升新建建筑绿色化水平对PM10的减排贡献最大,政策和强化情景下分别达到79%和74%.优化出行结构和推动数字基础设施绿色发展的协同控制效应最佳;强化情景下,完成农村地区散煤清洁能源改造、优化机动车结构和...  相似文献   

18.
宋晓聪  杜帅  邓陈宁  谢明辉  沈鹏  赵慈  陈忱  刘晓宇 《环境科学》2023,44(12):6630-6642
钢铁行业是中国碳密集度最高的工业行业之一,为分析钢铁行业生命周期碳排放及碳减排潜力,从生命周期角度构建碳排放核算模型,以2020年为例开展实证分析,通过优化废钢使用量、化石燃料燃烧量、电力碳足迹因子以及清洁运输比例4项变量,对钢铁行业生命周期碳减排潜力作预测评估,同时使用敏感性分析确定影响钢铁生命周期碳减排因素的关键程度.结果表明,2020年中国钢铁行业全生命周期二氧化碳(CO2)排放总量约24.04亿t,其中原料获取和加工生产阶段是钢铁行业碳排放的关键环节,占钢铁行业生命周期CO2排放总量的98%以上.从CO2排放源类别分析,化石燃料节约和外购电力清洁化是钢铁行业降碳的重中之重.到2025年,通过推广低碳技术、优化电力结构、增加废钢炼钢量、提高清洁方式运输比例,分别可使钢铁行业实现20%、 6%、 5%和1%的碳减排潜力.化石燃料燃烧量对钢铁行业生命周期CO2排放的影响最显著,电力碳足迹因子和废钢炼钢使用量次之.关于钢铁行业节能低碳技术,短期内以推广轧钢工序与高炉炼铁工序低碳技术为主,未来随着电炉...  相似文献   

19.
电力碳排放的数据质量取决于电网排放因子的准确性。为了获得用于产品碳足迹计算的电网电力碳足迹排放因子,基于电网排放因子数据和计算方法,将核算范围扩展到电力上游的燃料开采与生产、发电设施建设与退役以及电力生产过程,考虑CO2、CH4、N2O等温室气体排放,得到2020年中国区域及省级的电网电力碳足迹排放因子。结果表明:华北地区排放因子最高(1.005 t CO2e/MW·h),南方地区排放因子最低(0.470 t CO2e/MW·h),可再生能源占比高的省份排放因子低,全国排放因子显著降低。研究得到的电网电力碳足迹排放因子可为电力碳排放计算提供参考,建议在计算产品碳足迹时优先使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号