首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradation of nonylphenol in river sediment   总被引:1,自引:0,他引:1  
We investigated the biodegradation of nonylphenol monoethoxylate (NP1EO) and nonylphenol (NP) by aerobic microbes in sediment samples collected at four sites along the Erren River in southern Taiwan. Aerobic degradation rate constants (k1) and half-lives (t1/2) for NP (2 microg g(-1)) ranged from 0.007 to 0.051 day(-1) and 13.6 to 99.0 days, respectively; for NP1EO (2 microg g(-1)) the ranges were 0.006 to 0.010 day(-1) and 69.3 to 115.5 days. Aerobic degradation rates for NP and NP1EO were enhanced by shaking and increased temperature, and delayed by the addition of Pb, Cd, Cu, Zn, phthalic acid esters (PAEs), and NaCl, as well as by reduced levels of ammonium, phosphate, and sulfate. Of the microorganism strains isolated from the sediment samples, we found that strain JC1 (identified as Pseudomonas sp.) expressed the best biodegrading ability. Also noted was the presence of 4'-amino-acetophenone, an intermediate product resulting from the aerobic degradation of NP by Pseudomonas sp.  相似文献   

2.
Chang BV  Liao CS  Yuan SY 《Chemosphere》2005,58(11):1000-1607
We investigated anaerobic degradation rates for three phthalate esters (PAEs), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and di-(2-ethylhexyl) phthalate (DEHP), from river sediment in Taiwan. The respective anaerobic degradation rate constants for DEP, DBP, and DEHP were observed as 0.045, 0.074, and 0.027 1/day, with respective half-lives of 15.4, 9.4, and 25.7 days under optimal conditions of 30 °C and pH 7.0. Anaerobic degradation rates were enhanced by the addition of the surfactants brij 35 and triton N101 at a concentration of 1 critical micelle concentration (CMC), and by the addition of yeast extract. Degradation rates were inhibited by the addition of acetate, pyruvate, lactate, FeCl3, MnO2, NaCl, heavy metals, and nonylphenol. Our results indicate that methanogen, sulfate-reducing bacteria, and eubacteria are involved in the degradation of PAEs.  相似文献   

3.
This study investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in soil. The results show that the optimal pH for NP degradation was 7.0 and that the degradation rate was enhanced when the temperature was increased. The addition of compost enhanced NP degradation. The individual addition of the electron donors lactate, acetate, and pyruvate inhibited NP degradation. The high-to-low order of NP degradation rates under three anaerobic conditions was sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the anaerobic degradation of NP, with sulfate-reducing bacteria being a major component of the soil. Of the anaerobic strains isolated from the soil samples, strain AT3 expressed the best ability to biodegrade NP.  相似文献   

4.
This study investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in soil. The results show that the optimal pH for NP degradation was 7.0 and that the degradation rate was enhanced when the temperature was increased. The addition of compost enhanced NP degradation. The individual addition of the electron donors lactate, acetate, and pyruvate inhibited NP degradation. The high-to-low order of NP degradation rates under three anaerobic conditions was sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the anaerobic degradation of NP, with sulfate-reducing bacteria being a major component of the soil. Of the anaerobic strains isolated from the soil samples, strain AT3 expressed the best ability to biodegrade NP.  相似文献   

5.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

6.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

7.
Balch G  Metcalfe C 《Chemosphere》2006,62(8):1214-1223
The endocrine modulating potency of five alkylphenol compounds to fish, including nonylphenol (NP), three nonylphenol ethoxylate mixtures (NP1EO, NP4EO, NP9EO) and one nonylphenol ethoxycarboxylate (NP1EC) was assessed using in vivo tests conducted with Japanese medaka (Oryzias latipes). Medaka exposed to test materials from 1 day to 100 days post-hatch were monitored for alterations to sex ratios and secondary sex characteristics and development of gonadal intersex (i.e., testis-ova). The treatment with 100 microg l-1 NP (measured 29 microg l-1) induced gonadal intersex in over 80% of exposed males, mixed secondary sex characteristics in over 40% of exposed fish and suppression of the development of papillae on the anal fin of 100% of males. The 30 microg l-1 NP (measured 8.7 microg l-1) treatment induced gonadal intersex in only one of the 22 exposed males and mixed secondary sex characteristics in approximately 20% of the exposed fish. An elevated incidence of fish with mixed secondary sex characteristics and suppression of papillae development was also observed in the treatment with NP1EO at the highest test concentration of 300 microg l-1 (measured 105 microg l-1). There was no evidence of mixed secondary sex characteristics or gonadal intersex in treatments with the remaining test mixtures. This study confirms that NP is an estrogenic compound that could affect gonadal development in fish chronically exposed to concentrations in the range of 10 microg l-1. NP1EO is very weakly estrogenic at concentrations that are an order of magnitude higher than the lowest observed effect concentration for nonylphenol.  相似文献   

8.
Lu J  Jin Q  He Y  Wu J 《Chemosphere》2007,69(7):1047-1054
Biodegradation behavior of nonylphenol polyethoxylates (NPEOs) under Fe(III)-reducing conditions was investigated. The study demonstrated that NPEOs could be rapidly biodegraded under Fe(III)-reducing conditions. Almost 60% of the total NPEOs were removed within three days and the maximum biodegradation rate was 34.95+/-0.84 microM d(-1). NPEOs were degraded via sequential removal of ether units under Fe(III)-reducing conditions. No nonylphenol polyethoxy-carboxylates (NPECs) were formed in this process. This ether removal process was coupled to Fe(III) reduction. Nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) slightly accumulated in the anaerobic biodegradation process. The accumulation of these estrogenic metabolites led to a significant increase in the estrogenic activity during the biodegradation period. The calculated estrogenic activity reached its top on day 14 when the total concentration of these estrogenic metabolites was maximal. This is the first report of the primary biodegradation behavior of NPEOs under Fe(III)-reducing conditions. These findings are of major environmental importance in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

9.
Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil   总被引:20,自引:0,他引:20  
Chang BV  Shiung LC  Yuan SY 《Chemosphere》2002,48(7):717-724
Known concentrations of phenanthrene, pyrene, anthracene, fluorene and acenapthene were added to soil samples to investigate the anaerobic degradation potential of polycyclic aromatic hydrocarbon (PAH). Consortia-treated river sediments taken from known sites of long-term pollution were added as inoculum. Mixtures of soil, consortia, and PAH (individually or combined) were amended with nutrients and batch incubated. High-to-low degradation rates for both soil types were phenanthrene > pyrene > anthracene > fluorene > acenaphthene. Degradation rates were faster in Taida soil than in Guishan soil. Faster individual PAH degradation rates were also observed in cultures containing a mixture of PAH substrates compared to the presence of a single substrate. Optimal incubation conditions were noted as pH 8.0 and 30 degrees C. Degradation was enhanced for PAH by the addition of acetate, lactate, or pyruvate. The addition of municipal sewage or oil refinery sludge to the soil samples stimulated PAH degradation. Biodegradation was also measured under three anaerobic conditions; results show the high-to-low order of biodegradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the PAH degradation; sulfate-reducing bacteria constitute a major component of the PAH-adapted consortia.  相似文献   

10.
The aim of this work was to elucidate the role of nitrate as a terminal electron acceptor on the biodegradation of NPEO. We have characterized the products of NPEO degradation by mixed microbial communities in anaerobic batch tests by means of HPLC, 1H NMR and GC–MS. Anaerobic degradation of NPEO was strictly dependent on the presence of nitrate. Within seven days of anoxic incubation, NP2EO appeared as the major degradation product. After 21 days, NP was the main species detected, and was not degraded further even after 35 days. Nitrate concentration decreased in parallel with NPEO de-ethoxylation. A transient accumulation of nitrite was observed within the time period in which NP formation reached its maximum production. The observed generation of nonylphenol coupled to nitrate reduction suggests that the microbial consortium possessed an alternate pathway for the degradation of NPEO, which was not accessible under aerobic conditions.  相似文献   

11.
Alkylphenol ethoxylates (APEOs) are a group of non-ionic surfactants that are degraded microbially into more lipophilic degradation products with estrogenic potential, including nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), octylphenol (4-tOP) and nonylphenol (4-NP). Nonylphenol ethoxylates are used in paper recycling plants for de-inking paper and have the potential to be released into the environment through spreading of wastewater treatment sludge for soil amendment. Three samples of recycled paper sludge were collected from farmers' fields and analyzed for concentrations of NP1EO, NP2EO, 4-NP and 4-tOP. Each sample differed in the amount of time elapsed since the sludge was placed on farmers' fields. Primary degradation products of APEOs were present at low micrograms/g concentrations in the sludge samples. Differences in the concentrations of these analytes in sludge samples indicated that APEO concentrations declined by 84% over a period of 14 weeks on farmers' fields. Changes in the chromatographic patterns of acetylated 4-NP indicated that there is a group of recalcitrant nonylphenol isomers that degrades more slowly than other isomers. These data indicate that microbial degradation may reduce the risk of environmental contamination by these compounds, but more work is required to assess the toxic potential of APEOs in sludges used for soil amendment.  相似文献   

12.
Alkylphenol polyethoxylates (APEOs) have been widely used as nonionic surfactants in a variety of industrial and commercial products. Typical compounds are nonylphenol polyethoxylates (NPEOs) and octylphenol polyethoxylates (OPEOs), which serve as precursors to nonylphenol (NP) and octylphenol (OP), respectively. NP and 4-t-OP are known to have endocrine disrupting effects on fish (medaka, Oryzias latipes), so it is important to know the concentrations of APEOs in the environment. Because the analytical characteristics of these compounds depend on the length of the ethoxy chain, it is necessary to use appropriate compounds as internal standards or surrogates. We synthesized two 13C-labeled surrogate compounds and used these compounds as internal standards to determine NPEOs and OPEOs by high-performance liquid chromatography (LC)-mass spectrometry. Method detection limits were 0.015 microg/L for NP (2)EO to 0.037 microg/L for NP(12)EO, and 0.011 microg/L for OP(3,6)EO to 0.024 microg/L for OP (4)EO. NPEO concentrations in water from a sewage treatment plant were less than 0.05-0.52 microg/L for final effluent and 1.2-15 microg/L for influent. OPEO concentrations were less than 0.05-0.15 microg/L for the final effluent and less than 0.05-1.1 microg/L for influent.  相似文献   

13.
Biodegradation of 4-nonylphenol in seawater and sediment   总被引:15,自引:0,他引:15  
Biodegradation of 14C-labelled nonylphenol at the concentration 11 microg litre (-1) in seawater has been estimated by collection and quantification of the formed labelled carbon dioxide. Initially degradation was very slow but when the microorganisms had become adapted, after four weeks at 11 degrees C, the degradation rate increased rapidly and after 58 days about 50% of 14C from NP was found in the CO2 fraction. In the presence of sediment the initial degradation rate was high and did not increase after longer incubation. Lack of oxygen reduced the degradation rate by half in the presence of sediment.  相似文献   

14.
Li D  Dong M  Shim WJ  Yim UH  Hong SH  Kannan N 《Chemosphere》2008,71(6):1162-1172
To understand the distribution characteristics of nonylphenolics and sterols, samples such as in creek water, sea surface water, waste water treatment plant (WWTP) effluent water, sediment and mussel were collected and analyzed. The principal analytes are nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), coprostanol (5beta) and cholestanol (5alpha). All these target pollutants showed 100% detection frequency in all of the samples analyzed. Total concentration of nonylphenolic compounds ranged from 334 to 3628ngl(-1) (average: 1331ngl(-1)) in creek water, from 15 to 36400ngl(-1) (average: 1013ngl(-1)) in sea surface water, from 131 to 2811ngg(-1) dry weight (average: 581ngg(-1) dry weight) in sediment and from 50.5 to 289ngg(-1) dry weight (average: 139ngg(-1) dry weight) in mussel. For water samples, levels of nonylphenolics determined in summer season were higher than those in spring season. Among them, nonylphenol and NP1EO was dominant in creek water and seawater, respectively. The highest concentration was recorded in sediment near a WWTP effluent outlet. And high levels of nonylphenolics and sterols were found in about 3km area surrounding WWTP effluent outlet. Coefficient of linear regression (R(2)) for NP in mussel and in sediment was 0.90. Similarly good correlation (R(2)=0.98) was obtained between concentration in water and in mussel indicating that a steady state has been reached in this bay. The calculated bio concentration factor (BCF=2990) for NP in Masan Bay agrees well with reported values in the literature.  相似文献   

15.
Hou SG  Sun HW  Gao Y 《Chemosphere》2006,63(1):31-38
Sorption of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) as well as their binary and ternary mixtures were studied and compared on three simulated suspended particulate matters (SPMs). Sorption dynamics of NP on the three SPMs could be divided into two phases, the rapid sorption phase and the slow sorption phase. A third phase, 'apparent desorption' occurred before the slow sorption phase for NP1EO and NP2EO as well as for all mixtures. Initial sorption rate increased with the OC% content of the SPMs. At low concentration, the sorption of NP, NP1EO and NP2EO (only at low concentration for 3# SPM) followed linear isotherm on the three SPMs. The linear Kd value of NP or NP1EO increased with the OC% content of SPM. In mixtures, sorption of NP, NP1EO and NP2EO increased significantly, and a 'critical point', after which sorption increased significantly, was observed in certain sorption isotherms.  相似文献   

16.
The degradation of two groups of organic pollutants in three different Mediterranean forest soils amended with sewage sludge was studied for nine months. The sewage sludge produced by a domestic water treatment plant was applied to soils developed from limestone, marl and sandstone, showing contrasting alkalinity and texture. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10–13 carbon alkylic chain, and nonylphenolic compounds, including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO + NP2EO). These compounds were studied because they frequently exceed the limits proposed for sludge application to land in Europe. After nine months, LAS decomposition was 86–96%, and NP + NP1EO + NP2EO decomposition was 61–84%, which can be considered high. Temporal trends in LAS and NP + NP1EO + NP2EO decomposition were similar, and the concentrations of both types of compounds were highly correlated. The decomposition rates were higher in the period of 6–9 months (summer period) than in the period 0–6 months (winter + spring period) for total LAS and NP + NP1EO + NP2EO. Differences in decay rates with regard to soil type were not significant. The average values of decay rates found are similar to those observed in agricultural soils.  相似文献   

17.
The degradation of isoxaben [N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide] was studied in soil and in an aqueous system. Soil studies were conducted in Erlenmeyer flasks (treated with 1 microg/g isoxaben) and mineralization studies in Biometer flasks (treated with 1 microg/g unlabeled and 14C-isoxaben) incubated at 23 C. Degradation in the aqueous system was performed in Erlenmeyer flasks under aerobic and anaerobic conditions incubated at 23 degrees C. Incubation mixtures were extracted at selected times and analyzed for isoxaben and degradation products by HPLC with product identification confirmed by GC-MS. After 8 weeks, 78% and 23% of the total isoxaben disappeared in nonsterile and sterile soils, respectively. After 12 weeks, approximately 1% of the labeled isoxaben was recovered as CO2 in the Biometer flask experiments; no volatile products were detected, and 5% and 33% of the total radioactivity was recovered from the nonsterile and sterile soils, respectively. In the aquatic system after 8 weeks, isoxaben had decreased from 1microg/g to 0.1 and 0.004 microg/g under aerobic and anaerobic conditions, respectively. Degradation products detected from the soil studies were 3-nitrophthalic acid and 4-methoxyphenol, and 3-nitrophthalic acid in the aqueous system studies. Microbial activity was considered to be a major factor in the degradation of isoxaben in this study.  相似文献   

18.
Eleven drinking water treatment plants, located downstream of textile plants or pulp and paper mills, have been sampled monthly during a year for the analysis of 17 nonylphenol ethoxylates (NP1-17EO) and two nonylphenoxycarboxylic acids (NP1-2EC). At all but one plant, results in the drinking water, for the sum of these 19 substances, range between below detection levels and 6.7 microg/l. Annual means are between 0.02 and 2.8 microg/l. At the other plant, the yearly average concentration is 10.4 microg/l and the monthly maximum is 43.3 microg/l. In the surface (pre-treatment) water, the annual mean concentrations of the 11 plants range between 0.14 and 17.8 microg/l and the recorded instantaneous maximum is 55.3 microg/l. According to Canadian health authorities, drinking water is a negligible route of human exposure to nonylphenolic compounds, even at the highest concentrations found in this study. After transformation of the data into nonylphenol equivalents, about 20% of the surface water samples exceed the Canadian 1 microg/l nonylphenol water quality guideline for the protection of aquatic life. Some results also exceed Québec's 6 microg/l nonylphenol guideline. The efficiency of the plants in removing nonylphenolic compounds from drinking water is highly variable, ranging from 11% to 99%.  相似文献   

19.
This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.  相似文献   

20.
Yang S  Yoshida N  Baba D  Katayama A 《Chemosphere》2008,71(2):328-336
The anaerobic degradation of biphenyl was investigated in four uncontaminated Japanese paddy soils and one river sediment sample contaminated with benzene and chlorinated aliphatics. Two of the paddy soils and the sediment were capable of degrading biphenyl anaerobically without any additional medium or electron acceptors. The half-lives of biphenyl biodegradation in the three samples were 212 d in the Kuridashi soil, 327 d in the Kamajima soil, and 429 d in the river sediment. The Kuridashi soil metabolized 1+/-0.3% of [U-14C]-biphenyl into CO2 and 5+/-2% into water-soluble metabolites after 45 d of incubation. Submerged conditions, which result in lower nitrate and iron oxide contents, and neutral pH, appeared to be the common properties among the samples that influenced their degradation capacities. The addition of 10mM sulfate and 20mM Fe(III) as electron acceptors did not enhance the biphenyl degradation rate, whereas 10mM nitrate completely inhibited biphenyl degradation. The addition of different electron donors (lactate, acetate, or pyruvate) slightly slowed the degradation. Molybdate (an inhibitor of sulfate-reducing bacteria) had an inhibitory effect on biphenyl biodegradation, but bromoethanesulfonic acid (an inhibitor of methanogens) did not. Most biphenyl degradation was observed when only water was added, with no other electron acceptors or donors. These results suggest that sulfate-reducing bacteria and fermentative microbial populations play important roles in anaerobic biphenyl biodegradation in paddy soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号