首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuel cell vehicles (FCV) and other hydrogen systems with pressurized hydrogen has a safety hazard of spontaneous ignition during its sudden release into the tube. Tube parameter is a key factor affecting the spontaneous ignition of pressurized hydrogen. In this paper, a numerical study on the spontaneous ignition of pressurized hydrogen during its sudden release into the tube with varying lengths and diameters is conducted. The models of Large Eddy Simulation (LES), Eddy Dissipation Concept (EDC), Renormalization Group (RNG), 10-step like opening process of burst disk and 18-step detailed hydrogen combustion mechanism are employed. 6 cases are simulated based on the previous experiments. Numerical results show that the possibility of spontaneous ignition of pressurized hydrogen increases inside the longer and thinner tubes, which agrees with the experimental results. The increasing of tube length has little influence on the shock wave formation and propagation inside the tube. However, there exists critical tube lengths for the generation of Mach disk and the normal shock wave: the maximum and minimum distances for the generation of the Mach disk in 10 mm diameter tube are 7.8 and 6.7 mm, respectively. As for the normal shock wave, these critical values are 22.1 and 19.4 mm, respectively. In addition, the formation times and initial positions of Mach disk and normal shock wave are delayed inside the thicker tube. Due to the shock-affected time increases with the increasing of tube length, the temperature could rise to the critical ignition temperature and triggers the spontaneous ignition due to the sufficient tube length even though the less hydrogen/air mixture and the contact surface with lower temperature is produced inside the thicker tube. Finally, a simple time scale analysis is conducted.  相似文献   

2.
An experimental investigation on the effects of continuous semicircular curved structure on spontaneous ignition during pressurized hydrogen suddenly release was conducted. An S-shaped tube with 700 mm in length and 10 mm in diameter was used in our experiments, and a straight tube with the same configuration was adopted for comparison. The results show that the continuously generated rarefaction waves and reflected shock waves make the pressure curves in the S-shaped tube more complicated. Meanwhile, the mean velocity and intensity of the leading shock wave undergo considerable attenuation when it propagates in the S-shaped structure. By comparing with the straight tube, the minimum critical pressure condition for spontaneous ignition in the S-shaped tube is slightly difficult to reach, but the difference is not huge. Nevertheless, the S-shaped structure can effectively promote hydrogen-air mixing and make combustion more intense. A secondary overpressure peak detected by the pressure transducer near the nozzle occurs in the spontaneous ignition cases and no such pressure increase is caught in the non-ignition cases. The transition from spontaneous combustion flame to a jet flame at the nozzle and the complete out-tube jet flame development process are captured and discussed.  相似文献   

3.
This paper describes a numerical and experimental investigation of hydrogen self-ignition occurring as a result of the formation of a shock wave. The shock wave is formed in front of high-pressure hydrogen gas propagating in a tube. The ignition of the hydrogen–air mixture occurs at the contact surface of the hydrogen and oxidant mixture and is due to the temperature increase produced as a result of the shock wave. The required condition for self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. The experimental technique employed was based on a high-pressure chamber pressurized with hydrogen, to the point of a burst disk operating to discharge pressurized hydrogen into a tube of cylindrical or rectangular cross section containing air. A physicochemical model involving gas-dynamic transport of a viscous gas, detailed kinetics of hydrogen oxidation and heat exchange in the laminar approach was used for calculations of high-pressure hydrogen self-ignition. The reservoir pressure range, when a shock wave is formed in the air that has sufficient intensity to produce self-ignition of the hydrogen–air mixture, is found. An analysis of governing physical phenomena based on the experimental and numerical results of the initial conditions (the hydrogen pressure inside the vessel, and the shape of the tube in which the hydrogen was discharged) and physical mechanisms that lead to combustion is presented.  相似文献   

4.
A novel computational approach based on the coupled 3D Flame-Tracking–Particle (FTP) method is used for numerical simulation of confined explosions caused by preflame autoignition. The Flame-Tracking (FT) technique implies continuous tracing of the mean flame surface and application of the laminar/turbulent flame velocity concepts. The Particle method is based on the joint velocity–scalar probability density function approach for simulating reactive mixture autoignition in the preflame zone. The coupled algorithm is supplemented with the database of tabulated laminar flame velocities as well as with reaction rates of hydrocarbon fuel oxidation in wide ranges of initial temperature, pressure, and equivalence ratio. The main advantage of the FTP method is that it covers both possible modes of premixed combustion, namely, frontal and volumetric. As examples, combustion of premixed hydrogen–air, propane–air, and n-heptane–air mixtures in enclosures of different geometry is considered. At certain conditions, volumetric hot spots ahead of the propagating flame are identified. These hot spots transform to localized exothermic centers giving birth to spontaneous ignition waves traversing the preflame zone at very high apparent velocities, i.e., nearly homogeneous preflame explosion occurs. The abrupt pressure rise results in the formation of shock waves producing high overpressure peaks after reflections from enclosure walls.  相似文献   

5.
Experimental studies of detonation initiation by external stimulation of exothermic reactions closely behind a propagating shock wave (SW) are reported. Gaseous and heterogeneous fuel–air mixtures have been studied. Spatially distributed electric dischargers with properly tuned triggering times are shown to provide very short distances for shock-to-detonation transition in smooth-walled tubes. The energy of each individual discharger was shown to be smaller than the critical energy required for direct detonation initiation by a single discharger. The total energy of the dischargers appeared to be lower than the critical energy of direct detonation initiation. Available experiments with deflagration-to-detonation transition (DDT) in tubes with regular or irregular obstacles are also treated as detonation initiation by a traveling ignition source. In this case, instead of external stimulation of chemical activity, the localized obstacle-induced autoignition of shock-compressed gas occurs which can be closely coupled with the propagating SW. Two possible DDT scenarios are identified, namely, ‘fast’ and ‘slow’ DDT. In case the ignition timing at obstacles is closely coupled with the SW, favorable conditions for ‘fast’ DDT can occur. Otherwise, the SW decouples from the ignition pulses and ‘slow’ DDT can occur at a later stage due to cumulating of flame-induced pressure waves and ‘explosion in the explosion’ phenomenon.  相似文献   

6.
The present study is an experimental investigation of the last stages of the deflagration-to-detonation transition. A fast flame following a lead shock was generated by passing a detonation wave through a perforated plate. The shock flame complex then interacts with an obstacle of different shape. We study the influence of the obstacle shape on the transition mechanism to a detonation. The obstacles studied are a single round or square obstacle, a flat plate, a C-shaped and an H-shaped obstacle. The experiments were performed in a thin transparent channel permitting high speed schlieren visualization. Stoichiometric propane-oxygen was investigated at sub-atmospheric conditions. For each obstacle configuration, the initial pressure was changed to modify the flame burning velocity and the Mach number of the leading shock. The burning velocity prior to the interaction was measured experimentally from the displacement velocity of the flame in the videos. This required estimating the speed of the gas ahead of the flame. A linear correction to the speed immediately behind the lead shock was applied using the shock change equations and the measured pressure gradient behind the lead shock in order to account for the non-steadiness of the lead shock and viscous losses to the walls. Three main findings were that the obstacle shape had a minimal influence on the critical flame strength required for transition, although obstacles with a forward facing cavity were able to suppress the transition by isolating the re-initiation event inside the cavity. The main transition mechanism for all geometries was the enhancement of the flame burning velocity through the flame interaction with the shock reflected on the obstacle leading to Richtmyer-Meshkov instability. Finally, it was found that the flame burning velocity of the initial flame required for transition was closely approximated by the Chapman-Jouguet burning velocity. Consistent with the visual observations, this supports the view that transition is favored when the flame is in phase with the acoustic waves, and strong internal pressure waves can be amplified.  相似文献   

7.
为了研究对称障碍物条件下瓦斯爆炸压力波与火焰传播的耦合作用,在150 mm×150 mm×1 700 mm的有机玻璃瓦斯爆炸管道中,距离点火端不同距离安装0.5阻塞率的对称障碍物,进行8.5%甲烷体积分数的爆炸试验,采集瓦斯爆炸的超压信号并同步拍摄火焰传播图像。结果表明:火焰穿越板式对称障碍物的过程经历了火焰加速、火焰降速到火焰再加速的过程,火焰降速的时间仅为5 ms。距离点火焰源不同长度的对称障碍物在火焰加速过程中的作用存在明显差异,近点火源的障碍物作用主要为诱导湍流,远离点火源的障碍物作用主要为湍流增强。  相似文献   

8.
This study investigates the effect of the ignition position on vented hydrogen-air deflagration in a 1 m3 vessel and evaluates the performance of the commercial computational fluid dynamics (CFD) code FLACS in simulating the vented explosion of hydrogen-air mixtures. First, the differences in the measured pressure-time histories for various ignition locations are presented, and the mechanisms responsible for the generation of different pressure peaks are explained, along with the flame behavior. Secondly, the CFD software FLACS is assessed against the experimental data. The characteristic phenomena of vented explosion are observed for hydrogen-air mixtures ignited at different ignition positions, such as Helmholtz oscillation for front ignition, the interaction between external explosion and combustion inside the vessel for central ignition, and the wall effect for back-wall ignition. Flame-acoustic interaction are observed in all cases, particularly in those of front ignition and very lean hydrogen-air mixtures. The predicted flame behavior agree well with the experimental data in general while the simulated maximum overpressures are larger than the experimental values by a factor of 1.5–2, which is conservative then would lead to a safe design of explosion panels for instance. Not only the flame development during the deflagration was well-simulated for the different ignition locations, but also the correspondence between the pressure transients and flame behavior was also accurately calculated. The comparison of the predicted results with the experimental data shows the performance of FLACS to model vented mixtures of hydrogen with air ignited in a lab scale vessel. However, the experimental scale is often smaller than that used in practical scenarios, such as hydrogen refueling installations. Thus, future large-scale experiments are necessary to assess the performance of FLACS in practical use.  相似文献   

9.
The problems of lifting and dispersing of a dust layer behind the propagating shock wave as well as ignition, combustion of coal particles and dust-layered detonation formation in a tube are numerically investigated. The layered detonation is formed at large distance from the place of the primary shock wave initiation (~100 diameters of the tube). The strong oblique transverse shocks caused by combustion zone were discovered. The acceleration of leading shock wave and dust-layered detonation formation are connected with increasing and intensification of combustion zone which strongly depends on arising system of the oblique waves due to the development of the dust layer instabilities and vice versa. In the applied model, the moving medium is treated as a two-phase, two-velocity and two-temperature continuum with mechanical and thermal interphase interaction. The numerical procedure is based on the finite-volume approach and is implemented for parallel computing. The results obtained are of interest for applications in predictive modelling of accidents in industrial systems with reactive dust.  相似文献   

10.
This paper is devoted to the numerical and experimental investigation of hydrogen self-ignition as a result of the formation of a primary shock wave in front of a cold expanding hydrogen gas jet. Temperature increase, as a result of this shock wave, leads to the ignition of the hydrogen–air mixture formed on the contact surface. The required condition for hydrogen self-ignition is to maintain the high temperature in the area for a time long enough for hydrogen and air to mix and inflammation to take place.

Calculations of the self-ignition of a hydrogen jet are based on a physicochemical model involving the gas-dynamic transport of a viscous gas, the kinetics of hydrogen oxidation, the multi-component diffusion, and the heat exchange. We found that the reservoir pressure range, when a shock wave formed in the air during depressurization, has sufficient intensity to produce self-ignition of the hydrogen–air mixture formed at the front of a jet of compressed hydrogen. We present an analysis of the initial conditions (the hydrogen pressure inside the vessel, the temperature of the compressed hydrogen and the surrounding air, and the diameter of the hole through which the jet was emitted), which leads to combustion.  相似文献   


11.
The paper outlines an experimental study of influence of the ignition position and obstacles on explosion development in premixed methane–air mixtures in an elongated explosion vessel. As the explosion vessel, 1325 mm length tube with 128.5 mm diameter was used. Location of the ignition was changeable, i.e., fitted in the centre or at one of ends of the tube, when the tube was in a horizontal position. When it was in a vertical position, three locations of the ignition (bottom, centre and top) were used. In the performed study, the influence of obstacles on the course of pressure was investigated. Two identical steel grids were used as the obstacles. They were placed 405 mm from either end of the tube. Their blockage ratio (grid area to tube cross-section area) was determined as 0.33 for most of experiments. A few additional experiments (with smaller blockage ratio—0.16) were also conducted in order to compare the influence of the blockage ratio on the explosion development. Also some experiments were conducted in a semi-cylindrical vessel with volume close to 40 l.

All the experiments were performed under stabilized conditions, with the temperature and pressure inside the vessel settled to room values and controlled by means of electronic devices. The pressure–time profiles from two transducers placed in the centreline of the inner wall of the explosion vessel were obtained for stoichiometric (9.5%), lean (7%) and rich (12%) methane–air mixture. The results obtained in the study, including maximum pressures and pressure–time profiles, illustrate a quite distinct influence of the above listed factors upon the explosion characteristics. The effect of ignition position, obstacles location and their BR parameters is discussed.

The additional aim of the performed experiments was to find the data necessary to validate a new computer code, developed to calculate an explosion hazard in industrial installations.  相似文献   


12.
The method described in this paper enabled reliable and accurate positioning of an overdriven detonation by calculation of shock wave velocities (detonation and retonation) for hydrogen explosions in a closed 18 m long horizontal DN150 pipe. This enabled an empirical correlation between the ignition position and the run-up distance to DDT to be determined. It was shown that the initial ability of the flame to expand unobstructed and the piston-like effect of burnt gas expanding against the closed end of the tube contributed to initial flame acceleration and hence were able to affect the run-up distance to overdriven detonation. Flame speeds and rates of initial pressure rise were also used to explain how these two competing effects were able to produce a minimum in the run-up distance to DDT. The shortest run-up distance to DDT, relative to the ignition position, for this pipe and gas configuration was found when the ignition position was placed 5.6 pipe diameters (or 0.9 m) from the closed pipe end. The shortest run-up distance to DDT relative to the end of the pipe was recorded when the ignition source was placed 4.4 pipe diameters or 0.7 m from the pipe end.  相似文献   

13.
Spontaneous ignition of pressurized hydrogen release through a tube into air is investigated using a modified version of the KIVA-3V CFD code. A mixture-averaged multi-component approach is used for accurate calculation of molecular transport. Autoignition and combustion chemistry is accounted for using a 21 step kinetic scheme. Ultra fine meshes are employed along with the Arbitrary Lagrangia–Eulerian (ALE) method to reduce false numerical diffusion. The study has demonstrated a possible mechanism for spontaneous ignition through molecular diffusion.

In the simulated scenario, the tube provided additional time to achieve a combustible mixture at the hydrogen–air contact surface. When the tube was sufficiently long under certain release pressure, autoignition would initiate inside the tube at the contact surface due to mass and energy exchange between low temperature hydrogen and shock-heated air through molecular diffusion. Following further development of the hydrogen jet downstream, the contact surface became distorted. Turbulence plays an important role for hydrogen/air mixing in the immediate vicinity of this distorted contact surface and led the initial laminar flame to transit into a stable turbulent flame.  相似文献   


14.
Flameproof enclosures having internal electrical components are generally used in classified hazardous areas such as underground coalmines, refineries and places where explosive gas atmosphere may be formed. Flameproof enclosure can withstand the pressure developed during an internal explosion of an explosive mixture due to electrical arc, spark or hot surface of internal electrical components. The internal electrical component of a flameproof enclosure can form ignition source and also work as an obstacle in the explosion wave propagation. The ignition source position and obstacle in a flameproof enclosure have significant effect on explosion pressure development and rate of explosion pressure rise. To study this effect three cylindrical flameproof enclosures with different diameters and heights are chosen to perform the experiment. The explosive mixture used for the experiment is stoichiometric composition of methane in air at normal atmospheric pressure and temperature.It is observed that the development of maximum explosion pressure (Pmax) and maximum rate of explosion pressure rise (dp/dt)ex in a cylindrical flameproof enclosure are influenced by the position of ignition source, presence of internal metal or non-metal obstacles (component). The severity index, KG is also calculated for the cylindrical enclosures and found that it is influenced by position of ignition source as well as blockage ratios (BR) of the obstacles in the enclosures.  相似文献   

15.
激波与森林作用的实验研究   总被引:2,自引:0,他引:2  
利用激波与森林的作用,有可能成为森林灭火中的一项新技术,本文报告了激波与林带作用的实验模拟方法,实验技术与装备,测试和显示手段等基本技术环节。激波在林地,林带中的传播和衰减,以及其它物理现象由纹影方法作了显示。激波诱导的压力场也作了测量。研究表明,以激波管为基础的模拟技术是成功的,实验结果对于进一步认识激波与林冠火阵面的相互作用有很好的先导意义。  相似文献   

16.
对二维爆炸波的运动状态进行了数值模拟,并考虑模拟爆炸波从不同方向与燃烧场的作用情况,通过对流场中压力、温度的变化情况来分析来探讨激波灭火的机理,为实验实验模拟提供了先导。同时还对爆炸波与树的相互作用情况进行了数值模拟,为今后对森林的整体建模提供参考。  相似文献   

17.
The ultimate objective of the research outlined in this paper is to determine the conditions governing shock-induced ignition of dusty flows in curved pipelines using analytical and computational approaches. The results of numerical simulation indicate that ignition of two-phase flows in curved channels is mainly conditioned by the shock-induced flow and is not very sensitive to the flow structure in front of the shock wave. The calculations of nonreactive shock propagation in the quasi-steady two-phase flow and in the uniform quiescent dust suspension revealed significant differences in the postshock flow structure downstream the channel corner. Nevertheless, ignition occurred in the region where the predominant role was played by reflected shock waves, i.e., in the vicinity to the channel corner. The results call for further studies dealing with shock-induced ignition and explosion build-up in curved channels.  相似文献   

18.
矿井煤炭自燃是煤矿五大自然灾害之一,而煤炭自燃隐蔽着火点位置的确定是解决煤炭自燃问题的关键。本文结合实际情况将火源位置的确定问题归结为热传导方程的寻源反问题。在理想状态下,把煤矿井下热传导的三维模型简化为二维模型,建立热传导方程及初始条件和边界条件,在matlab中编制了有限差分程序对井下着火点的温度场进行了正反演模拟。数值模拟结果表明:该方法能够较准确地反演出火源的特性,并随着离散化程度的提高,离散解逐渐逼近真实解。通过本文的数值模拟我们得知有限差分法求解热传导寻源反演的方法是解决矿井隐蔽火源发火点位置的有效途径之一,对矿井防、灭火研究具有较高的理论和实际应用价值。  相似文献   

19.
Experiments were conducted in a 1 m3 vessel with a top vent to investigate the effect of methane concentration and ignition position on pressure buildup and flame behavior. Three pressure peaks (p1, p2, and Pext) and two types of pressure oscillations (Helmholtz and acoustic oscillations) were observed. The rupture of vent cover results in p1 that is insensitive to methane concentration and ignition position. Owing to the interaction between acoustic wave and the flame, p2 forms in the central and top ignition explosions when the methane–air mixture is near–stoichiometric. When the methane–air mixture is centrally ignited, p2 first increases and then decreases with an increase in the methane concentration. The external explosion-induced Pext is observed only in the bottom ignition explosions with an amplitude of several kilopascals. Under the current experimental conditions, flame–acoustic interaction leads to the most serious explosions in central ignition tests. Methane concentration and ignition position have little effect on the frequency of Helmholtz and acoustic oscillations; however, the Helmholtz oscillation lasts longer and first decreases and then increases as the methane concentration increases for top ignition cases. The ignition position significantly affects the Taylor instability of the flame front resulting from the Helmholtz oscillation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号