首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The removal of heavy metals from aqueous effluents so as to avoid their toxic, bioaccumulation and biomagnification effects to humans and environment is usually realized by means of physical, chemical treatment, and biological processes. The aim of this study is to evaluate the potential of rapeseed waste from biodiesel production as a biosorbent for Zn(II) ions.The ability of the rapeseed waste for Zn(II) biosorption exhibited a maximum at pH 4.5–5. The removal efficiency of Zn(II) from solution with an initial concentration of 72 mg L−1 varied from 39% to 89% for an increase of the rapeseed waste dose from 2 to 30 g L−1. The amount of Zn(II) retained on the tested rapeseed increased with increasing metal ion concentration, but the Zn(II) sorption percentage decreased. The equilibrium data are fitted to the Langmuir isotherm better than to the Freundlich isotherm. The kinetics of Zn(II) biosorption process follows a pseudo-second order model. The thermal stability of the rapeseed before and after Zn(II) biosorption was studied by thermogravimetric analysis. It was found that the zinc loaded rapeseed exhibits a better initial thermal stability than the original rapeseed, presumably due to the cross linking generated by the intermolecular complexation of Zn(II) ions. In both cases, the thermal decomposition takes place according to some reassembling kinetic models, in two phases with order n reactions. The results of this study strongly suggest the possibility to use rapeseed as an effective biosorbent for Zn(II) ions removal from aqueous effluents (municipal/industrial wastewaters).  相似文献   

2.
The aim of this work is the study of p-nitrophenol (PNP) removal, as a nitroaromatic compound, using a hybridized photo-thermally activated potassium persulfate (KPS) in a fully recycled batch reactor. Response surface method was used for modeling the process. Reaction temperature, KPS initial dosage and initial pH of the solution were selected as variables, besides PNP degradation efficiency was selected as the response. ANOVA analysis reveals that a second order polynomial model with F-value of 41.7, p-value of 0.0001 and regression coefficient of 0.95 is able to predict the response. Based on the model, the process optimum conditions were introduced as initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 66 °C. Also experiments showed that using thermolysis and photolysis of the persulfate simultaneously, the role of thermolysis is not considerable. A pseudo first order kinetic model was established to describe the degradation reaction. Operational cost, as a vital industrial criterion, was estimated so that the condition of initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 25 °C showed the highest cost effective case. Under the preferred mild condition, the process will reach to 84% and 89% of degradation and mineralization efficiencies, after 60 and 120 min, respectively.  相似文献   

3.
Concerning the high volume of wastewater containing dye in Iran and its adverse effects, it is necessary to develop scientific solutions for treating these wastewaters. The aim of this study was to evaluate the efficiency of the alumina-coated multi-walled carbon nanotubes in removing the Reactive Red 198 (RR 198) and Blue 19 (RB 19) dyes. Synthetic samples including dye with different concentrations were prepared. These samples were put in contact with different contents of alumina/multi-walled carbon nanotubes, in different pH values, in different contact times, different temperatures and the presence of sodium sulfate or sodium carbonate. The optimum pH, dye concentration and temperature for removal of the two dyes was 3, 50 mg l−1 and 25 °C, respectively. The optimum adsorbent dose for removal the RR 198 dye was 0.5 g l−1 and for Blue 19 was 0.4 g l−1. The optimum contact time for RR 198 was 150 min and RB 19 was 180 min. In this condition, maximum removal efficiency for RR 198 and RB 19 was 91.54% and 93.51%, respectively. The adsorption study was analyzed kinetically, and the results revealed that the adsorption fitted a pseudo-second order kinetic model. According to these results alumina/multi-walled carbon nanotubes can effectively remove RR 198 and RB 19 from aqueous solutions.  相似文献   

4.
Cationic surfactant (Hexadecyltrimenthylammonium chloride) modified bentonite clay was prepared and systematically studied for its adsorption behavior as an efficient adsorbent for the removal of basic dyes such as methylene blue (MB), crystal violet (CV) and Rhodamine B (RB) from aqueous phase. Organo modified clay shows better capacity for the removal of three dyes. The adsorption process was found to be dependent on pH and initial dye concentration. The maximum dye sorption was found to be at a pH of 9.0 (99.99% for MB, 95.0% for CV and 83.0% for RB). The adsorption capacity for the dyes was found to be 399.74, 365.11 and 324.36 μmol/g for MB, CV and RB, respectively at 30 °C. The equilibrium uptake was attained within 240 min. The kinetic studies were revealed that sorption follows a pseudo-second-order kinetic model which indicates chemisorption between adsorbent and adsorbate molecules. Adsorption isotherm indicates non-energetically adsorption sites which fit with Freundlich isotherm model. The fitness of kinetics and isotherm models was evaluated by using HYBRID error analysis function. Competitive adsorptions of dyes were studied by using binary component systems.  相似文献   

5.
Cadmium is an extremely toxic metal commonly found in industrial regions. Anthropogenic activity is the most important factor causing its interference to water, soil and air resources. The aim of many researches is to present remediation strategy or to remove cadmium from contaminated resources through an economical and efficient method. Cadmium adsorption from aqueous solution using Alhaji maurorum seed adsorbent has been investigated and optimized in this study. Moreover, isotherm and kinetics of adsorption process was studied. The seeds are washed by distilled water after separation from the plant, and then dried in room temperature for 48 h. They are powdered by grinder and passed through sieve no.18 as well. Adsorption process was optimized in 4 steps regarding pH, contact time, adsorption dose and initial concentration of cadmium effects. The cadmium concentration in solution was measured using ICP-OES method. The results of optimization tests showed that the optimum condition of cadmium adsorption (85.5% removal) occurs at pH of 6.5 with 20 g/L of adsorption dose for 45 min. In addition, the efficiency of adsorption process increases as the cadmium concentration reduces in the initial solution. Adsorption process follows the pseudo second-order kinetics and Freundlich isotherm with correlation coefficients of 0.999 and 0.99, respectively. According to the findings of this analysis, it was concluded that A. maurorum seed is a good biological adsorbent for adsorbing cadmium from aqueous solution.  相似文献   

6.
The present study investigates the adsorption potential of Chrysanthemum indicum flower in its raw (CIF-R) and biochar (CIF-BC) form for the removal of cobalt ions from aqueous solution. The adsorbents were characterized for their surface area using BET analysis, surface morphology and elemental composition with SEM-EDAX and for the presence of functional groups by FTIR analysis. Batch adsorption experiments were carried out to evaluate the effect of process parameters, viz. pH, adsorbent dosage, initial metal ion concentration, contact time, stirring speed, presence of interfering ions and temperature on the adsorption of Co(II) ion using both the adsorbents. The optimum conditions for maximum removal of Co(II) ion was ascertained to be pH 5 for both adsorbents, adsorbent dose of 4 g/L and 3 g/L, equilibrium time of 60 min and 45 min, respectively, for CIF-R and CIF-BC. The maximum adsorption capacity of CIF-R and CIF-BC was found to be 14.84 mg/g and 45.44 mg/g, respectively, for the removal of Co(II) ion. The mechanism of adsorption was studied using different models of adsorption kinetics, isotherms and thermodynamics. It was inferred that Co(II) adsorption on both CIF-R and CIF-BC followed pseudo-second order kinetics and Langmuir isotherm model with the process being spontaneous and endothermic in nature.  相似文献   

7.
The removal of copper and nickel from aqueous solution on the Na-bentonite has been studied under static conditions. Experiments were carried out as a function of solution pH, dosage of Na-bentonite, contact time and temperature. The adsorption equilibrium for nickel and copper onto Na-bentonite is reached in 200 min. The adsorption of copper and nickel is pH dependent in the pH range 2–9. The kinetic process of adsorption can be described by the pseudo-second-order kinetic equation excellently and the adsorption isotherm be fitted to the Langmuir model by means of regression analyses very well. The adsorption capacities follow the order of Cu2+ > Ni2+ in single-component systems and competitive adsorption capacities in order decreasing is Cu2+ > Ni2+ in binary-component systems.  相似文献   

8.
The effects of some commonly used pH conditioners, viz., lime, banana ash, the carbonate and the bicarbonate of sodium and potassium and their binary mixture, on simultaneous removal of arsenic and iron ions from water have been studied. KHCO3 has been found to be the most suitable pH conditioner for the purpose. About 80 mg/L KHCO3 can remove both arsenate and iron ions from initial 250 μg/L and 20 mg/L to below their respective guideline values of the WHO for drinking water, retaining the final pH in the acceptable range for drinking. The simultaneous removal of arsenate and iron by the pH-conditioners decreases in the order: Lime > KHCO3 > NaHCO3 > K2CO3 > Na2CO3 > ash. However, lime requires post-treatment correction of highly alkaline pH. The arsenate ion is removed predominantly through goethite or ferrihydrite in the presence of the bicarbonates and through ferric hydroxide in the presence of the more alkaline pH-conditioners. KHCO3 is more advantageous over the more basic substances including NaHCO3, because with it, one not only needs the smallest dose but also can avoid careful adjustment of the dose for regulating the initial and the final pH. The paper clearly demonstrates the potential of KHCO3 to substitute the currently used pH-conditioners, viz., ash, lime and NaHCO3 for simultaneous removal of arsenate and iron ions.  相似文献   

9.
The present study reported a method for removal of As(III) from water solution by a novel hybrid material (Ce-HAHCl). The hybrid material was synthesized by sol–gel method and was characterized by XRD, FTIR, SEM–EDS and TGA–DTA. Batch adsorption experiments were conducted as a function of different variables like adsorbent dose, pH, contact time, agitation speed, initial concentration and temperature. The experimental studies revealed that maximum removal percentage is 98.85 at optimum condition: pH = 5.0, agitation speed = 180 rpm, temperature = 60 °C and contact time = 80 min using 9 g L−1 of adsorbent dose for initial As(III) concentration of 10 mg L−1. Using adsorbent dose of 10 g L−1, the maximum removal percentage remains same with initial As(III) concentration of 25 mg L−1 (or 50 mg L−1). The maximum adsorption capacity of the material is found to be 182.6 mg g−1. Subsequently, the experimental results are used for developing a valid model based on back propagation (BP) learning algorithm with artificial neural networking (BP-ANN) for prediction of removal efficiency. The adequacy of the model (BP-ANN) is checked by value of the absolute relative percentage error (0.293) and correlation coefficient (R2 = 0.975). Comparison of experimental and predictive model results show that the model can predict the adsorption efficiency with acceptable accuracy.  相似文献   

10.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

11.
An ozonation process was performed using a recycled electrochemical ozone generator system. A titanium based electrode, coated with nanocomposite of Sn–Sb–Ni was applied as anode in a laboratory-made electrochemical reactor. A constant flow rate of 192 mg/h of generated ozone was entered to an ozonation reactor to contact with a typical target pollutant, i.e., Rhodamine B (Rh.B) molecules in aqueous solution. Four operational parameters such as: initial dye concentration, pH, temperature and the contact time were evaluated for the ozonation process. Experimental findings revealed that for a solution of 8 mg/L of the dye, the degradation efficiency could reach to 99.5% after 30 min at pH 3.7 and temperature of 45 °C as the optimum conditions. Kinetic studies showed that a second order equation can describe the ozonation adequately well under different temperatures. Also, considering to the importance of process simulation, a three-layered feed forward back propagation artificial neural network model was developed. Sensitivity analysis indicated order of the operational parameter's relative importance on the model output as: time  pH > Rh . B initial concentration > temperature.  相似文献   

12.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

13.
In present investigation, an attempt has been made for the synthesis of cupric oxide nanoparticles (CuONPs) through a green route by utilizing lemon juice extract as a bioreductant. The synthesized CuONPs were characterized through UV–visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The CuONPs were utilized for Cr(VI) removal from water through adsorption method in batch mode at different initial Cr(VI) concentration, pH, temperature and CuONPs dosage. The maximum uptake capacity of CuONPs was found to be 16.63 mg of Cr(VI)/g at pH 4.0. Implementation of response surface methodology (RSM) followed by artificial neural network hybridized with genetic algorithm (ANN-GA) approach has resulted maximum Cr(VI) adsorption of 98.8% under the optimized conditions of initial metal concentration 22.5 mg/L, pH 3.81, CuONPs dose 1.28 g/L and temperature 37.1 °C. Under optimum conditions, adsorption isotherm study was conducted, which showed that the fitness of experimental data was well achieved with Langmuir isotherm model illustrating monolayer pattern of adsorption. Thermodynamic study revealed that the process was spontaneous and endothermic in nature, while adsorption kinetics was best explained by pseudo-second order kinetic model.  相似文献   

14.
Simultaneous photocatalytic reduction of poisonous Cr(VI) and Ni(II) ions, coupled with photocatalytic oxidation of sodium dodecyl benzene sulfonate (SDBS) were studied with a trace amount of commercial titania nanoparticles and by means of a direct-photo-irradiation reactor. The co-presence of metal ions and SDBS causes metal ions reduction as well as SDBS oxidation to enhance and energy efficiency to improve. XRD, XPS and FTIR analysis were used to characterize TiO2 particles before and after usage with the aim of evaluating the mechanism of reactions. The effect of major operating parameters, pH and temperature, was investigated. Under conditions of [Cr(VI)]0 = [Ni(II)]0 = 5 mg/L, [SDBS]0 = 10 mg/L, [TiO2] = 40 mg/L, pH 6 and T = 35 °C; the removal efficiencies of 55.4%, 71.2% and 57.2% were obtained, respectively, for Cr(VI) and Ni(II) reduction, as well as for SDBS oxidation, after 110 min operation. The relevant kinetic model jointed with the Arrhenius equation was introduced. Pseudo-first-order reactions are relevant. Energy consumption (electrical and thermal) evaluations revealed that operations at higher temperatures provide significant cost reduction. Meantime, a criterion was proposed for a consistent assessment of this kind of processes.  相似文献   

15.
Acid enhanced limestone defluoridation of water has been studied in a crushed limestone column reactor using oxalic acid (OA). The defluoridation has been studied with varying initial fluoride concentrations of 5, 10, 15 and 20 mg/L and acid concentrations of 0.01, 0.05 and 0.1 M. The fluoride removal was found to increase with increase in the concentration of the acid, removing fluoride up to 95% with 0.1 M OA. The observed good fluoride removal has been attributed to a combination of two mechanisms of fluoride removal, viz., precipitation of calcium fluoride and adsorption of fluoride ions on limestone surfaces. While the removal by precipitation remains same on repeated use of the same limestone column, the adsorption is more with the fresh limestone and decreases gradually on repeated use of the same limestone column. The precipitate has been characterized using various analytical tools, viz., X-ray diffraction, IR spectroscopy, thermogravimetric analysis, scanning electron microscopy combined with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The Ca2+ ions, formed due to dissolution of limestone by the acid, precipitate calcium fluoride along with precipitation of calcium oxalate. A good fluoride removal ability, low residual oxalate, acceptable final pH, low-cost and simplicity of the process make the present acid-enhanced limestone defluoridation process with OA a potential method for defluoridation of groundwater.  相似文献   

16.
This work focuses on modeling and optimization of a sono-assisted photocatalytic decolorization process of a model pollutant, azo dye C.I. direct red 16 (DR16). In the process, a high temperature thermal decomposition nano synthesized titanium dioxide (TD-TiO2) was applied as photocatalyst. Central composite design (CCD) methodology was used for designing the experiments, modeling and optimization of the process. A quadratic model was established to describe dependency of the decolorization efficiency (DE), as the model response, to some effective operational parameters, i.e. the catalyst dosage, pH and the dye initial concentration. The ANOVA analysis confirmed that all of the variables have significant influence on the model response. Under the established optimum conditions, 92.4% DE was achieved after 45 min; however, to access desirable mineralization efficiency, the process should be continued up to 120 min. All withdrawn samples from the reaction media during the process showed no antibacterial activity, which indicates safety of the treated effluent for disposal into the environment. Also studies showed that the process proceeds via two parallel branches of photolysis and photocatalysis, where propagation of the ultrasonic waves into the reaction media plays a vital promoting role on the latter branch.  相似文献   

17.
Aluminium-based water treatment sludge was used as a coagulant for removing/recovering phosphate from the effluent of upflow anaerobic sludge blanket (UASB) reactor treating municipal wastewater. The effect of three variables, namely sludge dose, initial pH and fresh coagulant (poly-aluminium chloride, PACl) dose was studied using response surface methodology. About 87% phosphate removal could be obtained at the optimum conditions of sludge dose 13.8 g/L, initial pH 6, and fresh PACl dose 5.8 mg Al/L. In order to achieve a similar phosphate removal, a dose in the range of 30–40 mg Al/L of fresh PACl was required. The results suggest that water treatment sludge can be reused as a coagulant for post-treatment of UASB reactor effluent treating municipal wastewater and can be considered as a promising alternative for removing phosphate which can substantially reduce the consumption of fresh PACl. The sludge generated during this process could potentially be used in land application which results in recycling of phosphate.  相似文献   

18.
In this study, recalcitrant total phenol (TPh) and organic matter removal were investigated at olive mill wastewater (OMW) in sequential Coagulation and Fenton system. This study focused on different operational parameters such as pH, H2O2, and Fe2+ dosages, and [Fe2+]/[H2O2] ratios. The optimum conditions were determined as; pH = 3; [Fe2+] = 2.5 g/L; [Fe2+]/[H2O2] = 2.5. A higher treatment efficiency was achieved at sequential Coagulation and Fenton system (COD, 65.5%) and TPh, 87.2%), compared to coagulation process (COD, 51.4%; total organic carbon (TOC), 38.6% and total nitrogen (TN) 52.1%). This study demonstrated that the Coagulation and Fenton process has a potential for efficient removal of phenolic pollutants from wastewater.  相似文献   

19.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

20.
In this study, chemical oxygen demand (COD) was characterized as total organic constituents and the isolated humic substances (HS) were characterized as an individual organic contaminant in landfill leachate. It was found that the HS content of landfill leachate was 83.3%. The results of laboratory tests to determine the roles of HS in reducing the organic content of landfill leachate during Fenton process are presented. Furthermore, the performances of oxidation and coagulation of Fenton reaction on the removal of HS and COD from leachate were investigated. The change curves of HS removal were similar to those of COD. The HS removal was 30% higher than COD removal, which indicated that HS were mostly degraded into various intermediate organic compounds but not mineralized by Fenton reagent. The oxidation removal was greatly influenced by initial pH relative to the coagulation removal. The oxidation and coagulation removals were linear dependent with hydrogen peroxide and ferrous dosages, respectively. Ferrous dosage greatly influenced the coagulation removal of COD at low ratio ([H2O2]/[Fe2+] < 3.0), but not at extremely high ratio ([H2O2]/[Fe2+] > 6.0). The coagulation removal of HS was not affected obviously by oxidation due to both Fenton oxidation and coagulation remove high molecular weight organics preferentially. Higher temperature gave a positive effect on oxidation removal at low Fe2+ dosage, but this effect was not obvious at high Fe2+ dosage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号