首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The CFD tool FLACS was developed from 1982 with a primary goal to predict gas explosion loads inside oil platform modules. The prediction of far-field blast loads was of secondary importance as any scenario creating a substantial far-field blast would already have collapsed the module where it originated. For the same reason the potential for a deflagration-to-detonation-transition (DDT) was not initially of interest. Over the past decade use of FLACS has been more widespread, and the tool is now frequently used to predict explosions on onshore facilities and FPSOs/FLNGs, where far-field blast loads and evaluation of DDT potential may be of significant interest. Previous work by Hansen et al. (2010) has highlighted a weakness in FLACS when predicting the far-field blast from strong gas explosions and, when using FLACS according to guidelines, far-field blast pressures will often be significantly underpredicted. For scenarios involving DDT this effect will be particularly strong. The current study will present a way to obtain more accurate far-field blast predictions by modified parameter settings in FLACS for strong deflagrations. Using modified settings, it is also possible, with good precision, to predict flame speeds, pressures and far-field blast from DDT-scenarios and directly initiated gas detonations, physics which are beyond the accepted capabilities of FLACS. Selected full-scale experiments from the DNV GL test site at Spadeadam will be used to compare with the simulations. Convincing evidence for DDT in large scale natural gas experiments (91% methane) was found in simulations of one of these tests.  相似文献   

2.
There is a general lack of information on the effects of full-bore obstacles on combustion in the literature, these obstacles are prevalent in many applications and knowledge of their effects on phenomena including burning rate, flame acceleration and DDT is important for the correct placing of explosion safety devices such as flame arresters and venting devices. In this work methane, propane, ethylene and hydrogen–air explosions were investigated in an 18 m long DN150 closed pipe with a 90 degree bend and various baffle obstacles placed at a short distance from the ignition source. After carrying out multiple experiments with the same configuration it was found that a relatively large variance existed in the measured flame speeds and overpressures, this was attributed to a stochastic element in how flames evolved and also how they caused and interacted with turbulence to produce flame acceleration. This led to several experiments being carried out for one configuration in order to obtain a meaningful average. It was shown that a 90 degree bend in a long tube had the ability to enhance flame speeds and overpressures, and shorten the run-up distance to DDT to a varying degree for a number of gases. In terms of the qualitative effects on these parameters they were comparable to baffle type obstacles with a blockage ratios of between 10 and 20%.  相似文献   

3.
The method described in this paper enabled reliable and accurate positioning of an overdriven detonation by calculation of shock wave velocities (detonation and retonation) for hydrogen explosions in a closed 18 m long horizontal DN150 pipe. This enabled an empirical correlation between the ignition position and the run-up distance to DDT to be determined. It was shown that the initial ability of the flame to expand unobstructed and the piston-like effect of burnt gas expanding against the closed end of the tube contributed to initial flame acceleration and hence were able to affect the run-up distance to overdriven detonation. Flame speeds and rates of initial pressure rise were also used to explain how these two competing effects were able to produce a minimum in the run-up distance to DDT. The shortest run-up distance to DDT, relative to the ignition position, for this pipe and gas configuration was found when the ignition position was placed 5.6 pipe diameters (or 0.9 m) from the closed pipe end. The shortest run-up distance to DDT relative to the end of the pipe was recorded when the ignition source was placed 4.4 pipe diameters or 0.7 m from the pipe end.  相似文献   

4.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

5.
High temperature flame fronts generated in methane–air explosions are one of the major hazards in underground coal mines. However, the distribution laws of the flame region in explosions of this type and the factors influencing such explosions have rarely been studied. In this work, the commercial software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, was used to carry out numerical simulations of a series of methane–air explosion processes for various initial premixed methane–air regions and cross-sectional areas in full-scale coal tunnels. Based on the simulated results and related experiments, the mechanism of flame propagation beyond the initial premixed methane–air region and the main factors influencing the flame region were analyzed. The precursor shock wave and turbulence disturb the initial unburned methane–air mixture and the pure air in front of the flame. The pure air and unburned mixture subsequently move backward along the axial direction and mix partially. The enlargement of the region containing methane induces that the range of the methane–air flame greatly exceeds the initial premixed methane–air region. The flame speed beyond the initial region is nonzero but appreciably lower than that in the original premixed methane–air region. The length of the initial premixed methane–air region has substantial influence on the size of the flame region, with the latter increasing exponentially as the former increases. For realistic coal tunnels, the cross-sectional tunnel area is not an important influencing factor in the flame region. These conclusions provide a theoretical framework in which to analyze accident causes and effectively mitigate loss arising from the repetition of similar accidents.  相似文献   

6.
7.
It is important to sufficiently understand the phenomena during the dust explosions in order to take appropriate measures preventing dust explosion accidents. However, at present basic knowledge on flame propagation mechanisms during dust explosions is not enough. In this study, therefore, the flame propagation mechanisms during dust explosions are examined by detailed analyses using a special observation at UV band. Small scale experiments were performed to analyze flame propagating processes in detail. In the experiments, the stearic acid was used as the combustible particle, suspended particles were ignited by an electric spark, and flame propagation through the combustible dust was observed by using a special observation system at UV band. The leading combustion zone is observed to consist of discrete burning blue spot flames by the observation using ordinary photograph system. It is questionable how the leading flame of such discrete structure propagates. In this study, high-speed video images at UV band through a band-pass filter were taken to detect OH emission from combustion reaction zone. Using this method, the propagating flame could be detected clearly and the flame propagation mechanism could be examined in detail. In the conditions performed in this study, discrete flame propagation was not observed and the leading flame was observed to propagate continuously. This result is of importance for understanding the flame propagation phenomena during dust explosion.  相似文献   

8.
Experiments about the influence of ultrafine water mist on the methane/air explosion were carried out in a fully sealed visual vessel with methane concentrations of 8%, 9.5%, 11% and 12.5%. Water mists were generated by two nozzles and the droplets' Sauter Mean Diameters (SMD) were 28.2 μm and 43.3 μm respectively which were measured by Phase Doppler Particle Anemometer (PDPA). A high speed camera was used to record the flame propagation processes. The results show that the maximum explosion overpressure, pressure rising rate and flame propagation velocity of methane explosions in various concentrations increased significantly after spraying. Furthermore, the brightness of explosion flame got much higher after spraying. Besides, the mist with a larger diameter had a stronger turbulent effect and could lead to a more violent explosion reaction.  相似文献   

9.
To effectively prevent and mitigate explosion hazards and casualties, relief venting of flammable gas explosions has been applied in production processes in a broad variety of industries. This work conducted fully vented experiments to investigate the influence of venting membrane thickness, and partially vented experiments to investigate the influence of baffle blocking rate on the explosion characteristics of 9.5 vol% methane-air mixtures in linked vessels with a 0.5 m long vented duct. Results indicate that the membrane thickness and blocking rate for the two types of vented explosions significantly affected the explosion overpressure. The smaller the membrane thickness and blocking rate, the lower the explosion overpressure. Secondary explosions were observed in the vented duct through experiments and a weaker explosion flame appeared at a small blocking rate of 20%. With the further increase in the blocking rate, the flame became extremely weak, and no secondary explosions occurred. The overpressure evolution process at different positions in the explosion duct and secondary explosion phenomenon in the vented duct were investigated. This work could probably serve as an important reference for the selection of technical parameters of explosion venting in the practical industrial processes.  相似文献   

10.
The present study discusses experiments on organic dust explosions in a setup with low wall influence. The proposed apparatus decouples the dust dispersion and the deflagration event in two separate compartments. The use of a continuous-wave laser to illuminate the centre plane of the observation chamber allows capturing both, the dust cloud and the flame during the same experiment and eliminates typical problems caused by the limited dynamic range of high-speed cameras. A k-means clustering method is used for image segmentation to obtain the spatial extent and the propagation velocities of the unreacted particle cloud and the flame zone. Spatially resolved velocities are calculated by the additional use of an optical flow method. The main goal of the presented setup and image processing method is to provide high quality validation data for the development of numerical models on dust deflagration.  相似文献   

11.
We study flame acceleration and DDT in a two-dimensional staggered array of square obstacles by solving the compressible multidimensional reactive Navier–Stokes equations. The energy release rate for a stoichiometric H2-air mixture is modeled by a one-step Arrhenius kinetics. The space between obstacles is filled with a stoichiometric H2-air mixture at 1 atm and 298 K. Initially, the flow is at rest, and a flame is ignited at the center of the array. Computations show effects of the obstacles as a series of events leading to DDT. During the initial flame acceleration, the speed of the flame depends on the direction of flame propagation since some directions are more obstructed than others. This affects the macroscopic shape of the expanding burned region, which forms concave boundaries in more obstructed directions. As the flame accelerates, shocks form ahead of the flame, reflect from obstacles, and interact with the flame. There are more shock–flame interactions in more obstructed directions, and this leads to a greater flame acceleration and stronger leading shocks. When the shocks become strong enough, their collisions with obstacles ignite the gas mixture, and detonations form. The simulation shows four independent DDT events within a 90-degree sector, all in more obstructed directions. Resulting detonations spread in all directions. Some parts of detonation fronts are quenched by diffractions around obstacles, but they are reignited by collisions of decoupled shocks, or overtaken by other detonations. Thus detonations continue to spread and quickly burn all the material between the obstacles.  相似文献   

12.
To reveal the effects of particle characteristics, including particle thermal characteristics and size distributions, on flame propagation mechanisms during dust explosions clearly, the flame structures of dust clouds formed by different materials and particle size distributions were recorded using an approach combining high-speed photography and a band-pass filter. Two obviously different flame propagation mechanisms were observed in the experiments: kinetics-controlled regime and devolatilization-controlled regime. Kinetics-controlled regime was characterized by a regular shape and spatially continuous combustion zone structure, which was similar to the premixed gas explosions. On the contrary, devolatilization-controlled regime was characterized by a complicated structure that exhibited heterogeneous combustion characteristics, discrete blue luminous spots appeared surrounding the yellow luminous zone. It was also demonstrated experimentally that the flame propagation mechanisms transited from kinetics-controlled to devolatilization-controlled while decreasing the volatility of the materials or increasing the size of the particles. Damköhler number was defined as the ratio of the heating and devolatilization characteristic time to the combustion reaction characteristic time, to reflect the transition of flame propagation mechanisms in dust explosions. It was found that the kinetics-controlled regime and devolatilization-controlled regime can be categorized by whether Damköhler number was less than 1 or larger than 1.  相似文献   

13.
Dispersal of inert particles on a flame front is one of the techniques employed to suppress explosions. The current study investigates the influence of micron-sized (75–90 μm) inert (sand) particles on the laminar burning velocity of methane-air premixtures of different equivalence ratios (0.9–1.2) and reactant temperatures (297, 350, 400 K) using a Bunsen-burner type experimental apparatus. When an inert particle interacts with the flame zone, it extracts energy from the flame, thereby acting like a heat sink and hence reducing the flame temperature. Results show that for sand particle size in the range of 75–90 μm, a concentration of 380–520 g/m3 is necessary for extinction of a methane-air flame at ambient temperature. An increase in reactant temperature reduces the heat-sink effect necessitating a higher concentration of sand to extinguish the flame. A mathematical model is developed to generalize the results and make them applicable to a wide range of parameters.  相似文献   

14.
It is indispensable to predict the pressure behavior caused by gas explosions for the safety management against accidental gas explosions. In this study, a simple method for predicting the pressure behavior during gas deflagrations in confined spaces was examined. Previously the pressure behavior was calculated analytically assuming laminar flame propagation. However, the results of this method often provide underestimation compared with experimental data. It was known the underestimation intensifies as the scale of explosion spaces becomes larger. On the large scale gas deflagration, flame instability (especially hydrodynamic instability) might be more effective and wrinkles appeared on the flame front. Then, the flame surface area was increased and the propagating flame was gradually accelerated. The ordinary prediction methods led to the underestimation because the propagating flame was assumed to be laminar. In this study, we considered the effect of flame wrinkles caused by flame instabilities. By regarding the flame front as a fractal structure, the flame surface area could be modified. Because a flame surface starts to be wrinkled on a certain flame radius, proper determination of the critical flame radius provided accurate prediction of pressure behavior on a large scale deflagration. In addition, correction of the KG value in a large vessel was discussed.  相似文献   

15.
Evaluation of accident scenarios including flame acceleration and deflagration-to-detonation transition (DDT) in chemical plant piping systems increases the need for an efficient numerical simulation tool capable of dealing with this phenomenon. In this work, a hybrid pressure-density-based solver including deflagrative flame propagation as well as detonation propagation is presented. The initial incompressible acceleration stage is covered by the pressure-based solver until the flame velocity reaches the fast flame regime and transition to the density-based solver is done. The deflagration source term is formulated in terms of a turbulent flame speed closure model incorporating various physical effects crucial for flame acceleration at low turbulence conditions (Katzy and Sattelmayer, 2018). Modelling of the detonation source term is based on a quadratic heat release function (Hasslberger, 2017). The presented numerical approach is validated in terms of DDT locations and pressure data from Schildberg (2015) as well as recently completed flame tip position measurements. For this purpose, H2/O2/N2 mixtures ranging from 25.6 vol-% H2 to 29.56 vol-% H2 in two different pipe geometries are considered. The focus of the current work is on predicting the DDT location correctly and good agreement is observed for the investigated cases.  相似文献   

16.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

17.
The current study estimates the radiation flux emitted from hot extended gas clouds characteristic of vapour cloud explosions along with the corresponding level of irradiance posed on particles suspended in the unburnt part of the cloud ahead of an advancing flame front. The data presented permits an assessment of the plausibility of combustion initiation by such particles due to forward thermal radiation. The thermal radiation will depend on the emissivity of the burned volume, which relates to the concentration of gaseous and particulate combustion products. A sensitivity analysis has been carried out to account for variations in the equivalence ratio, mixture pressure and radiative heat losses. The spatial distribution of irradiance ahead of the flame front has been computed by introducing appropriate geometrical factors to explore the impact of cloud size. Using fuel rich ethylene-air mixtures it has been shown that high flame emissivities can be achieved at path lengths of order 1 m even in the presence of very low soot volume fractions. The emissivity of gas-soot mixtures will hence be mainly determined by the soot concentration and to a lesser extent by the mixture temperature. Our analysis suggests that the role of forward thermal radiation as a contributing factor to flame propagation in large scale vapour cloud explosions can not currently be ruled out.  相似文献   

18.
A study on the obstacle-induced variation of the gas explosion characteristics   总被引:13,自引:0,他引:13  
A study on the variation of the gas explosion characteristics caused by the built-in obstacles was conducted in enclosed/vented gas explosion vessels. It has been well known that the obstacles in pipes and long ducts would accelerate the flame propagation, and cause the transition from deflagration to detonation. In this study, the explosion characteristics and the flame behavior of vented explosions and constant-volume explosions were investigated. Experiments were carried out in a 270-liter and 36-liter hexahedron vessels filled with LPG–air mixture. The explosion characteristics of the gas mixture were determined by using a strain-responding pressure transducer. The flame behavior was recorded by using a high-speed video camera. The shape and the size of the obstacle, and the gas concentration, were adjusted in the experiments.

It can be seen from the experimental results that, instead of being accelerated, the flame propagation inside the explosion vessel is decelerated by the plate obstacles fixed at the bottom of the vessel. Also, the characteristics of the enclosed explosion are not so affected by the built-in obstacles as those of the vented explosion are. It is believed that the eddy-induced turbulence behind the obstacle decelerates the flame propagation.  相似文献   


19.
The paper reviews large scale experiments with various fuels in air where successful deflagration to detonation transition (DDT) took place. This includes a recent experiment disclosed in the Buncefield R&D program, where DDT developed in the propane/air mixture. The DDT occurred in branches of deciduous trees in a premixed stagnant mixture. An internal R&D investigation programme was initiated to better understand the phenomena. A large scale experiment in an open space with ethane air mixture is presented in the paper. The premixed mixture was ignited at the edge of the congested three-dimensional rigs which consisted of vertical and horizontal pipes. After ignition, the flame accelerated in the congestion and transitioned to detonation at the end of congestion. Stable detonation propagated through the remaining open and uncongested space.The flame acceleration process leading to DDT is scale dependent. It also depends on many parameters leading to a large investigation array and, significant cost. However, such R&D efforts aimed toward a safer plant design, i.e. the prevention of occurrence of a major accident, are a small fraction of a real accident cost.  相似文献   

20.
Effects of ignitors and turbulence on dust explosions   总被引:1,自引:0,他引:1  
The aim of this work is in an attempt to increase the understanding of the acting behaviour of pyrotechnic ignitors and their effects on confined dust explosions. Flame visualization has shown that pyrotechnic ignitors can initiate an explosion by instantaneous jet-like volumetric and/or multipoint ignition. Hence, the rate of pressure rise and also the apparent burning velocity will be increased to some extent, depending on the ignitor energy and the reactivity of the mixtures. The ignitor effect is more important for the early stages of flame propagation and would be more significant in small explosion chambers. Thus, for dust explosion tests with various purposes, use of pyrotechnic ignitors should be made carefully, and the ignitor effect must be accounted for in the data interpretation. Turbulence induced by dust dispersion is a dominant factor in affecting dust explosions. At different ignition delays, however, the turbulence influence will be coupled with that of ignitors. This complicates further the interpretation of explosion data measured under turbulent conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号