首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We study flame acceleration and DDT in a two-dimensional staggered array of square obstacles by solving the compressible multidimensional reactive Navier–Stokes equations. The energy release rate for a stoichiometric H2-air mixture is modeled by a one-step Arrhenius kinetics. The space between obstacles is filled with a stoichiometric H2-air mixture at 1 atm and 298 K. Initially, the flow is at rest, and a flame is ignited at the center of the array. Computations show effects of the obstacles as a series of events leading to DDT. During the initial flame acceleration, the speed of the flame depends on the direction of flame propagation since some directions are more obstructed than others. This affects the macroscopic shape of the expanding burned region, which forms concave boundaries in more obstructed directions. As the flame accelerates, shocks form ahead of the flame, reflect from obstacles, and interact with the flame. There are more shock–flame interactions in more obstructed directions, and this leads to a greater flame acceleration and stronger leading shocks. When the shocks become strong enough, their collisions with obstacles ignite the gas mixture, and detonations form. The simulation shows four independent DDT events within a 90-degree sector, all in more obstructed directions. Resulting detonations spread in all directions. Some parts of detonation fronts are quenched by diffractions around obstacles, but they are reignited by collisions of decoupled shocks, or overtaken by other detonations. Thus detonations continue to spread and quickly burn all the material between the obstacles.  相似文献   

2.
Ethylene (C2H4) is a hydrocarbon fuel and widely used in chemical industry, however, ethylene is highly flammable and therefore presents a serious fire and explosion hazard. This work is initiated by addressing the hazard assessment of ethylene mixtures in different scale channels (d = 5 mm, 10 mm and 20 mm) from the aspect of flame acceleration (FA) and deflagration-to-detonation transition (DDT) by using large eddy simulation (LES) method coupled with the artificially thickened flame (ATF) approach. The fifth order local characteristics based weighted essentially non-oscillatory (WENO) conservative finite difference scheme is employed to solve the governing equations. The numerical results confirm that flame velocity increase rapidly at the beginning stage in three channels, and the flame acceleration rate is slower in the subsequent stage, afterwards, the flame velocity has an abrupt increase, and the onset of detonation occurs. Due to the fact that wall effect is significant in the narrow channel (e.g.,5 mm), especially in the ignition stage of the flame, flames have different shapes in wider channels (10 mm and 20 mm) and narrow channel (5 mm). Both the pressure and temperature profiles confirm DDT run-up distances are 0.251 m, 0.203 m and 0.161 m in 20 mm, 10 mm and 5 mm channels, respectively, which indicates that a shorter run-up distance is required in narrower channel. The cellular detonation structures for the ethylene-air mixture in different channels indicate that multi-headed detonation structures can be found in 20 mm channel, as the channel width decreases to 10 mm, detonation has a single-headed spinning structure, as the width is further reduced to 5 mm, only large longitudinal oscillation of the pressure can be observed.  相似文献   

3.
This paper presents results of an experimental investigation on the deflagration and deflagration-to-detonation transition (DDT) in an obstructed (blockage ratio BR = 50%), semi-confined flat layer filled with uniform hydrogen–air mixtures. The effect of mixture reactivity depending on flat layer thickness and its width is studied to evaluate the critical conditions for sonic flame propagation and the possibility for detonation onset. The experiments were performed in a transparent, rectangular channel with a length of 2.5 m. The flat layer thickness was varied from 0.06 to 0.24 m and the experiments were performed for different channel widths of 0.3, 0.6 and 0.9 m. The experimental results show flame velocity vs. hydrogen concentration for different thicknesses and widths of the semi-confined flat layer. Three different flame propagation regimes were observed: slow subsonic flame (M << 1), sonic deflagration (M ~ 1) and detonation (M >> 1). It is shown that flame acceleration (FA) to sonic speed is independent of the width of the flat layer. The critical expansion ratio for effective flame acceleration to sonic speed was found to be linearly dependent on the reciprocal layer thickness.  相似文献   

4.
An experimental study of flame propagation, acceleration and transition to detonation in stoichiometric hydrogen–methane–air mixtures in 6 m long tube filled with obstacles located at different configurations was performed. The initial conditions of the hydrogen–methane–air mixtures were 1 atm and 293 K. Four different cases of obstacle blockage ratio (BR) 0.7, 0.6, 0.5 and 0.4 and three cases of obstacle spacing were used. The wave propagation was monitored by piezoelectric pressure transducers PCB. Pressure transducers were located at different positions along the channel to collect data concerning DDT and detonation development. Tested mixtures were ignited by a weak electric spark at one end of the tube. Detonation cell sizes were measured using smoked foil technique and analyzed with Matlab image processing toolbox. As a result of the experiments the deflagration and detonation regimes and velocities of flame propagation in the obstructed tube were determined.  相似文献   

5.
In many practical situations, a flame may propagate along a pipe, accelerate and perhaps transform into a devastating detonation. This phenomenology has been known, more or less qualitatively, for a long time and mitigation techniques were proposed to try and avoid this occurrence (flame arresters, vents,...). A number of parameters need to be known and in particular the “distance to detonation” and more generally the flame acceleration characteristic scales. Very often, the ratio between the detonation run-up distance and the pipe diameter is used without any strong justification other that using a non-dimensional parameter (L/D). In this paper, novel experimental evidence is presented on the basis of relatively large scale experiments using 10 cm and 25 cm inner diameter duct with a length between 7 and 40 m. Homogeneous C2H4-air, CH4-air, C3H8-air and H2-air mixtures were used and different ignition sources. The interpretation suggests that the self-acceleration mechanism of the flame may be much better represented by flame instabilities than by turbulence build-up. One consequence would be that the maximum flame velocity and, following, the maximum explosion overpressure, would be rather linked with the run-up distance than with the L/D ratio.  相似文献   

6.
This paper presents results of an experimental investigation on fast flame propagation and the deflagration-to-detonation transition (DDT) and following detonation propagation in a semi-confined flat layer filled with stratified hydrogen–air mixtures. The experiments were performed in a transparent, rectangular channel open from below. The combustion channel has a width of 0.3 m and a length of 2.5 m. The effective layer thickness in the channel was varied by using different linear hydrogen concentration gradients. The method to create quasi-linear hydrogen concentration gradients that differ in the range and slope is also presented. The ignited mixtures were accelerated quickly to sonic flame speed in the first obstructed part of the channel. The interaction of the fast flame propagation with different obstacle set-ups was studied in the second part of the channel. The experimental results show an initiation of DDT by one additional metal grid in the obstructed semi-confined flat layer. Detonation propagation and failed detonation propagation were observed in obstructed and unobstructed parts of the channel.  相似文献   

7.
The paper summarizes the results of experimental tests and accompanying analyses to investigate the factors that govern flame acceleration and potential transition to detonation in a relatively long unobstructed piping system. The overall aim of the work was to obtain sufficient experimental data so as to be able to develop and evaluate methodologies for classifying and predicting potential detonation flame acceleration and deflagration to detonation transition (DDT) hazard in industrial process pipes and mixtures. The present results show that the flame acceleration process in an unobstructed pipe exhibit three distinct phases: an initial establishment phase; a second rapid acceleration phase and a final transition to detonation phase. Test results with ethylene indicate that the acceleration process is not sensitive to initial pressure (all other parameters remaining constant) but can be sensitivity to initial pipe wall temperature or possibly mixture humidity. The presence of bends increases the local rate of turbulent combustion, an effect attributed to the additional turbulence generated downstream of the bend. For straight pipes, detonation was only observed to develop for hydrogen–air and ethylene–air mixtures. Detonation was not observed with methane, propane or acetone as fuel in the present piping apparatus.  相似文献   

8.
A methodology for the computationally efficient CFD simulation of hydrogen-air explosions (including transition to detonation) in large volumes is presented. The model is validated by means of the largest ever conducted indoor DDT experiments in the RUT facility. A combination of models is proposed with a particular focus on the influence of flame-instabilities, especially of thermal-diffusive nature, which are crucial for very lean mixtures. Excellent agreement is achieved in terms of flame acceleration. The quality of DDT predictions itself depends on the underlying mechanism. Whereas DDT by shock-focusing is successfully simulated on under-resolved meshes, DDT by local explosions in the vicinity of the turbulent flame brush remains a challenge. Adaptive mesh refinement therefore emerges as a key technique to resolve more of the essential phenomena at reasonable computational costs affordable by industry. Finally, a generic case demonstrates the influence of mixture inhomogeneity, which can promote flame acceleration and ultimately DDT.  相似文献   

9.
The method described in this paper enabled reliable and accurate positioning of an overdriven detonation by calculation of shock wave velocities (detonation and retonation) for hydrogen explosions in a closed 18 m long horizontal DN150 pipe. This enabled an empirical correlation between the ignition position and the run-up distance to DDT to be determined. It was shown that the initial ability of the flame to expand unobstructed and the piston-like effect of burnt gas expanding against the closed end of the tube contributed to initial flame acceleration and hence were able to affect the run-up distance to overdriven detonation. Flame speeds and rates of initial pressure rise were also used to explain how these two competing effects were able to produce a minimum in the run-up distance to DDT. The shortest run-up distance to DDT, relative to the ignition position, for this pipe and gas configuration was found when the ignition position was placed 5.6 pipe diameters (or 0.9 m) from the closed pipe end. The shortest run-up distance to DDT relative to the end of the pipe was recorded when the ignition source was placed 4.4 pipe diameters or 0.7 m from the pipe end.  相似文献   

10.
Experiments with hydrogen–air and ethylene–air mixtures at atmospheric pressure were carried out in a 6.1 m long, 0.1 m diameter tube with different obstacle configurations and ignition types. Classical DDT experiments were performed with the first part of the tube filled with equally spaced 75 mm (44% area blockage ratio) orifice-plates. The DDT limits, defining the so-called quasi-detonation regime, where the wave propagates at a velocity above the speed of sound in the products, were found to be well correlated with d/λ = 1, where d is orifice-plate diameter and λ is the detonation cell size. The only exception was the rich ethylene limit where d/λ = 1.9 was found. In a second experiment detonation propagation limits were measured by transmitting a CJ detonation wave into an obstacle filled (same equally spaced 44% orifice plates) section of the tube. An oxy-acetylene driver promptly initiated a detonation wave at one end. In this experiment the quasi-detonation propagation limits were found to agree very well with the d/λ = 1 correlation. This indicates that the d/λ = 1 represents a propagation limit. In general, one can conclude that the classical DDT limits measured in an orifice-plate filled tube are governed by the wave propagation mechanism, independent of detonation initiation (DDT process) that can occur locally in the obstacles outside these limits. For rich mixtures, transmission of the quasi-detonation into the smooth tube resulted in CJ detonation wave. However, in a narrow range of mixtures on the lean side, the detonation failed to transmit in the smooth tube. This highlights the critical role that shock reflection plays in the propagation of quasi-detonation waves.  相似文献   

11.
To study the occurrence conditions and propagation characteristics of deflagration to detonation transition (DDT) in linked vessels, two typical linked vessels were investigated in this study. The DDT of the methane–air mixture under different pipe lengths and inner diameters was studied. Results showed that the CJ detonation pressure of the methane–air mixture was 1.86 MPa, and the CJ detonation velocity was 1987.4 m/s. Compared with a single pipe, the induced distance of DDT is relatively short in the linked vessels. With the increase in pipeline length, DDT is more likely to occur. Under the same pipe diameter, the DDT induction distance in the vessel–pipe–vessel structure is shorter than that in the vessel–pipe structure. With the increase in pipeline diameter, the length of the pipe required to form the DDT is reduced. For linked vessels in which detonation formed, four stages, namely, slow combustion, deflagration, deflagration to detonation, and stable detonation, occurred in the vessels. Moreover, for a pipe diameter of 60 mm and a length of 8 m, overdriven detonation occurred in the vessel–pipe–vessel structure.  相似文献   

12.
To achieve the rapid prediction of minimum ignition energy (MIE) for premixed gases with wide-span equivalence ratios, a theoretical model is developed based on the proposed idea of flame propagation layer by layer. The validity and high accuracy of this model in predicting MIE have been corroborated against experimental data (from literature) and traditional models. In comparison, this model is mainly applicable to uniform premixed flammable mixtures, and the ignition source needs to be regarded as a punctiform energy source. Nevertheless, this model can exhibit higher accuracy (up to 90%) than traditional models when applied to premixed gases with wide-span equivalence ratios, such as C3H8-air mixtures with 0.7–1.5 equivalence ratios, CH4-air mixtures with 0.7–1.25 equivalence ratios, H2-air mixtures with 0.6–3.15 equivalence ratios et al. Further, the model parameters have been pre-determined using a 20 L spherical closed explosion setup with a high-speed camera, and then the MIE of common flammable gases (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C2H2, C3H4, C2H6O, CO and H2) under stoichiometric or wide-span equivalence ratios has been calculated. Eventually, the influences of model parameters on MIE have been discussed. Results show that MIE is the sum of the energy required for flame propagation during ignition. The increase in exothermic and heat transfer efficiency for fuel molecules can reduce MIE, whereas prolonging the flame induction period can increase MIE.  相似文献   

13.
The overpressure peaks and flame propagation characteristics of hydrocarbon fuel-air mixtures vented deflagration in a 20-L cylindrical vessel with a slight static activation overpressure (PST = 2.5 kPa) and five vent opening ratio were studied by a series of experiments. The experiments focused on the effect of vent opening ratio on the overpressure peaks and flame propagation characteristics of hydrocarbon fuel-air mixture vented deflagration. The internal overpressure-time profiles and high-speed photographs of flame propagation processes were obtained. The results showed that three overpressure peaks were distinguished in the internal overpressure-time profiles, caused by the burst vent cover (pburst), the acceleration of burnt gas (pfv), and the fierce external deflagration of vented unburned fuel (pext), respectively. The changing of the vent opening ratio had almost no effect on the value of pburst and (dpburst/dt). With increasing vent opening ratio, the values of pfv, pext, (dpfv/dt) and (dpext/dt) showed a decreasing trend while the values of pburst and (dpburst/dt) were nearly constant. The flame presented a hemispherical shape before the vent cover ruptured then developed as a mushroom shape after accelerated to external field. There were three flame speed peaks during flame propagation process, resulted from venting flow acceleration, external deflagration, and axial heat flux formed by internal combustion. With the increase of vent opening ratio, all of the maximum flame speed, external average flame speed, maximum flame distance and external flame duration showed a downward trend, excepting for the internal average flame speed almost remained constant.  相似文献   

14.
The influence of additives of various chemical natures (CH4, N2, CO2, and steam) at a laminar burning velocity Su of hydrogen in air has been studied by numerical modelling of a flat flame propagation in a gaseous mixture. It was found that the additives of methane to hydrogen–air mixtures cause as a rule monotonic reduction in the Su value with the exception of very lean mixtures (fuel equivalence ratio ? = 0.4), for which a dependence of the laminar burning velocity on the additive's concentration has a maximum. In the case of the chemically inert additives (N2, CO2, H2O) the laminar burning velocity of rich near-limit hydrogen–air flames drops monotonically with an increase in the additive's content, but no more than 1.5 times, and the adiabatic flame temperature changes slowly in this case. In the case of methane as the additive, the laminar burning velocity is diminished approximately 5 times with an increase in the adiabatic flame temperature from 1200 to 2100 K. Deviations from the known empirical rule of the approximate constancy of the laminar burning velocity for near-limit flames are shown.  相似文献   

15.
An experimental study of flame propagation, acceleration and transition to detonation in hydrogen–air mixture in 2-m-long rectangular cross-section channel filled with obstacles located at the bottom wall was performed. The initial conditions of the hydrogen–air mixture were 0.1 MPa and 293 K and stoichiometric composition (29.6% H2 in air). The channel width was 0.11 m and blockage ratio was 0.5 in all experiments. The effect of channel geometrical scale on flame propagation was studied by using four channel heights H of 0.01, 0.02, 0.04, and 0.08 m. In each case, the obstacle height was equal to H/2 and the obstacle spacing was 2H.

The propagation of flame and pressure waves was monitored by four pressure transducers and four ion probes. The pairs of transducers and probes were placed at various locations along the channel in order to get information about the progress of the phenomena along the channel.

As a result of the experiments, the deflagration and detonation regimes and velocities of flame propagation in the obstructed channel were established.  相似文献   


16.
There is a general lack of information on the effects of full-bore obstacles on combustion in the literature, these obstacles are prevalent in many applications and knowledge of their effects on phenomena including burning rate, flame acceleration and DDT is important for the correct placing of explosion safety devices such as flame arresters and venting devices. In this work methane, propane, ethylene and hydrogen–air explosions were investigated in an 18 m long DN150 closed pipe with a 90 degree bend and various baffle obstacles placed at a short distance from the ignition source. After carrying out multiple experiments with the same configuration it was found that a relatively large variance existed in the measured flame speeds and overpressures, this was attributed to a stochastic element in how flames evolved and also how they caused and interacted with turbulence to produce flame acceleration. This led to several experiments being carried out for one configuration in order to obtain a meaningful average. It was shown that a 90 degree bend in a long tube had the ability to enhance flame speeds and overpressures, and shorten the run-up distance to DDT to a varying degree for a number of gases. In terms of the qualitative effects on these parameters they were comparable to baffle type obstacles with a blockage ratios of between 10 and 20%.  相似文献   

17.
Experiments on the flame propagation of starch dust explosion with the participation of ultrafine Mg(OH)2 in a vertical duct were conducted to reveal the inerting evolution of explosion processes. Combining the dynamic behaviors of flame propagation, the formation law of gaseous combustion products, and the heat dissipation features of solid inert particles, the inerting mechanism of explosion flame propagation is discussed. Results indicate that the ultrafine of Mg(OH)2 powders can cause the agglomeration of suspended dust clouds, which makes the flame combustion reaction zone fragmented and forms multiple small flame regions. The flame reaction zone presents non-homogeneous insufficient combustion, which leads to the obstruction of the explosion flame propagation process and the obvious pulsation propagation phenomenon. As the proportion of ultrafine Mg(OH)2 increases, flame speed, flame luminescence intensity, flame temperature and deflagration pressure all show different degrees of inerting behavior. The addition of ultrafine Mg(OH)2 not only causes partial inerting on the explosion flame, but also the heat dissipation of solid inert particles affects the acceleration of its propagation. The explosion flame propagation is inhibited by the synergistic effect of inert gas-solid phase, which attenuates the risk of starch explosion. The gas-solid synergistic inerting mechanism of starch explosion flame propagation by ultrafine Mg(OH)2 is further revealed.  相似文献   

18.
The effect of monoammonium phosphate (NH4H2PO4) particles on 5 μm aluminum dust flames is investigated experimentally and computationally. NH4H2PO4 in three particle size is employed to determine the inhibition efficiency on aluminum flame propagation. Flame inhibition mechanism considering both gas and surface chemistry of aluminum particles is developed. Results show that the inhibition effectiveness monotonously increases as NH4H2PO4 particle size is reduced to 25 μm. Flame morphology and flame microstructure change with the addition of different particle size NH4H2PO4. Small NH4H2PO4 particles within the range studied have a greater reduction in average flame propagation compared to the coarser one. Meanwhile, the fine NH4H2PO4 particles almost decompose completely during the penetration of aluminum flame and then undergo a sufficient chemical interaction with the flame. The simulations indicate that the decomposition products of NH4H2PO4 particles obstruct the oxidation of aluminum particles through flame radical consumption. Additionally, the addition of NH4H2PO4 can reduce the vaporization rate and surface reaction rate of aluminum particles.  相似文献   

19.
The paper aims at revealing the effect of blockage ratio (BR) on the flame acceleration process and the flame-vortex mechanism in an obstructed chamber based essentially on the experimental and numerical methods. In the experiments, high-speed video photography and pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulations, large eddy simulation (LES) with the flame surface density (FSD) model is applied to investigate the interaction between the moving flame and vortices induced by obstacle. The results demonstrate that the flame propagation process can be divided into four stages, namely spherical flame, finger-shaped flame, jet flame and volute flame for three obstacle BR configurations, and a small recirculation zone is observed above the obstacle only for BR = 0.5. The peak of flame tip speed and pressure growth rate increases with the blockage ratio. The generation and evolution of the vortex behind the obstacle can be attributed to the initial flame acceleration, while the subsequent flame deceleration is due to the flame-vortex interaction. In addition, the transition from a “thin reaction zones” to a “broken reaction zones” is also observed in the simulation.  相似文献   

20.
运用大型试验管道对瓦斯爆炸传播规律进行试验研究,并对瓦斯爆炸压力峰值、火焰速度和呈现时间进行分析,得出:在不出现爆轰的前提下,爆源点附近的压力峰值是全管道的最大值;爆炸压力峰值在沿管道的传播过程中从爆源点附近是先增大后减小,然后再逐渐增大且压力峰值最早呈现在出口附近;火焰传播速度随着传播距离的增大而逐渐增大且在爆炸初期增大速率更快;瓦斯浓度对爆炸压力峰值、火焰传播速度和呈现时间等都有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号