首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An iron oxide solid sponge H2S adsorbent works by reacting H2S and turning ferric oxide into ferric sulfide. The ferric sulfide will be converted back into ferric oxide and elemental sulfur when contacting oxygen or air. This study investigates the leaching of elemental sulfur from the solid sponge using anhydrous liquid ammonia as solvent. The leaching treatment expectedly results in effective regeneration of the adsorbent, which is able to lead to a sulfur removal and recovery process suitable for handling the small and mid-sized sulfur production cases, i.e., those less than 10 ton/day sulfur. The leaching does not significantly impair the physical properties, including the adsorbent pellet strength. The adsorption–regeneration (or leaching) cycle could be repeated at least three times. The cumulative sulfur loading can achieve as high as 50% (w/w), three times greater than that in the one-time use. The wash-off in leaching and the spent adsorbent can be made into slurry that is to be injected into underground formations such as depleted oil wells. It is anticipated that this underground injection is safer and more efficient than acid gas injection.  相似文献   

2.
In this study, removal of hydrogen sulfide (H2S) and carbon dioxide (CO2) from simulated syngas has been studied on one column scrubbing system. Gas flow rate as a measure of gas residence time and superficial gas velocity, gas composition, inlet H2S load, flow modes (countercurrent and cocurrent) and packing geometry were the parameters in the design and/or operation of an acid gas scrubber system. Better H2S scrubbing efficiencies have been obtained in countercurrent flow mode than that of cocurrent flow mode. When accordingly designed, static mixer with its superior performance on H2S removal overweighed to structured packings. The coexistence of CO2 and H2S has been shown to increase the sodium hydroxide (NaOH) consumption along the scrubber column thereby decreasing the H2S removal efficiency at higher H2S loads. The gas residence time as changing with the gas velocity was found to be more dominant on acid gas removal efficiency than the effect of superficial gas velocity within the experimented range. A gas residence times of equal or above 3 s were seemed to be closer to the optimum point.  相似文献   

3.
This paper presents the photo-catalytic degradation of real refinery wastewater from National Refinery Limited (NRL) in Karachi, Pakistan, using TiO2, ZnO, and H2O2. The pretreatment of the refinery effluent was carried out on site and pretreated samples were tested at 32–37 °C in a stirrer bath reactor by using ultra-violet photo oxidation process. The degradation of wastewater was measured as a change in initial chemical oxygen demand (COD) and with time. Optimal conditions were obtained for catalyst type, and pH. The titanium dioxide proved to be very effective catalysts in photo-catalytic degradation of real refinery wastewater. The maximum degradation achieved was 40.68% by using TiO2 at 37 °C and pH of 4, within 120 min of irradiations. When TiO2 was combined with H2O2 the degradation decreased to 25.35%. A higher reaction rate was found for titanium dioxide. The results indicate that for real refinery wastewater, TiO2 is comparatively more effective than ZnO and H2O2. The experiments indicated that first-order kinetics can successfully describe the photo-catalytic reaction. The ANOVA results for the model showed satisfactory and reasonable adjustment of the second-order regression model with the experimental data. The ANOVA results also showed that pH is significant than reaction time and catalyst dosage of TiO2; and in case of ZnO, reaction time is significant than pH and catalyst dosage. This study proves that real refinery wastewater reacts differently than synthetic refinery wastewater, oil field produced water or oil water industrial effluent.  相似文献   

4.
对下坪垃圾填埋场含氨尾气的处理进行了研究.研究结果显示,采用硫酸吸收含氨尾气,吸收效率可达98%以上.吸收产生的硫酸铵产品符合<肥料、土壤调理剂-硫酸铵标准>(GB535-1995).  相似文献   

5.
Liquid-phase nitration of toluene was carried out using a silica supported Cs salt of phosphomolybdic acid (Cs2.5H0.5PMoO40) as catalyst with dilute nitric acid under mild conditions. The Cs2.5H0.5PMoO40 particles with Keggin-type structure were well dispersed on the surface of silica, and the catalysts exhibited strong acidity, which may be responsible for the high catalytic nitration activity. The effects of various parameters on nitration were tested, which included reaction temperature, reaction time, catalyst amount and reactants ratio. Under suitable conditions, the nitrations gave high toluene conversion (99.6%) and good mono-nitration selectivity. Compared to the conventional process, there was no other organic solvent or sulfuric acid used in the reaction system, which made it more environment-friendly. Moreover, the supported catalyst was proven to have excellent stability in the nitration process.  相似文献   

6.
The addition of readily available high strength organic wastes such as fats, oils, and grease (FOG) from restaurant grease abatement devices may substantially increase biogas production from anaerobic digesters at wastewater treatment facilities. This FOG addition may provide greater economic incentives for the use of excess biogas to generate electricity, thermal, or mechanical energy. Co-digestion of FOG with municipal biosolids at a rate of 10–30% FOG by volume of total digester feed caused a 30–80% increase in digester gas production in two full scale wastewater biosolids anaerobic digesters (Bailey, 2007, Muller et al., 2010). Laboratory and pilot scale anaerobic digesters have shown even larger increases in gas production. However, anaerobic digestion of high lipid wastes has been reported to cause inhibition of acetoclastic and methanogenic bacteria, substrate, and product transport limitation, sludge flotation, digester foaming, blockages of pipes and pumps, and clogging of gas collection and handling systems. This paper reviews the scientific literature on biogas production, inhibition, and optimal reactor configurations, and will highlight future research needed to improve the gas production and overall efficiency of anaerobic co-digestion of FOG with biosolids from municipal wastewater treatment.  相似文献   

7.
The aim of this work is to investigate the level of damage to the heat exchanger in a Sulfur Recovery Unit (SRU) of a petroleum refinery. The by-products of oil refining are submitted to special treatment in order to meet technical specifications of corrosivity, sulfur content, acidity, formation of pollutant compounds, and color alteration. Sulfur is removed from the by-products in the form of H2S, which is an acid gas that is sent to the SRU for sulfur production. The gases in the SRU are H2S, CO2, SO2, and SO3, which are corrosive to the mild steel equipment. The Unit is frequently forced to paralyze its activities due to the corrosion of its heat exchangers and pressure vessels, and the acid gas load is burnt causing the release of SOx into the atmosphere. The above occurs when generalized corrosion damages SRU equipment. The importance of this work is to emphasize that the leakage of acid gas and sulfur into the atmosphere is a direct result of corrosion, which causes economical and environmental damage. This study may be used to improve the control of The Claus Process and to minimize corrosion damage. The SRU does not, at present, carry out any corrosion prevention methods. The corrosion of mild steel is controlled by correct air admission to oxide H2S, and to produce SO2, which is the reagent in the reaction of sulfur production.  相似文献   

8.
An industrial-scale biotrickling filter for the removal of high concentrations of H2S is described in this work. The system has been operating at H2S inlet concentrations between 1000 and 3000 ppmv at acidic conditions. A decrease of pH from 2.6 to 1.8 did not affect the biological activity inside the biofilter while reducing the water make-up consumption up to 75%. The current oxygen supply system, based on direct injection of air to the liquid phase, has demonstrated to be inefficient for a long-term operation leading to elemental sulfur accumulation in the packing material (i.e. promoting clogging episodes). The present study demonstrates it is possible to partially remove (40.3%) the deposited elemental sulfur by bio-oxidation when biogas is not fed. In normal operation conditions, the implementation of an aeration system based on jet-venturi devices has shown quite promising results in terms of oxygen transfer efficiency and robustness. Such improvement of oxygen transfer was translated in a better conversion of H2S to sulfate, which increased around 17%, prolonging the lifespan operation at low-pressure drop.  相似文献   

9.
硫酸侵蚀为混凝土耐久性损伤的一个重要方面.在硫酸盐侵蚀过程中,含铁矿物等侵蚀产物不断形成,导致混凝土材料形成不同程度的腐蚀.为研究不同pH值环境下含铁矿物对混凝土结构腐蚀的影响,在实验室配置了pH值为2.0、3.0和4.0的稀硫酸溶液,结合不同洗刷作用方式来模拟酸雨环境,采用室内长期浸泡试验方法对混凝土试件进行不同程度...  相似文献   

10.
Acrylic acid (AA) is an important component for the production of acrylate polymer. In a typical acrylic manufacturing unit, waste water contains AA in a range of 4–15 wt.% contributes to the high values of chemical oxygen demand. Due to the toxicity of AA to the aquatic organism, this wastewater should be treated before it is discharged to the environment. The waste water could be evaporated before sending to the incineration which was neither economic feasible nor environmental friendly. Esterification of wastewater containing carboxylic acid with alcohol could be a promising method to recover the acid by converting it to ester while purifying the wastewater. In the present study, recovery of AA via esterification with 2-ethyl hexanol (2EH) was investigated. The model industrial wastewater with various concentration of AA (10–100% w/w) was reacted with 2EH to produce 2-ethyl hexyl acrylate (2EHA) in the setups with total reflux and continuously water removal. These Amberlyst-15 (ion exchange resin) catalyzed reactions were carried out under the mass transfer resistance free region. The performance of both systems was compared. The yield for the reactions of the AA solutions with the AA concentrations of 30–80% was enhanced significantly when the reactions were carried out using the second setup. The kinetic data of the esterification of dilute AA was well described by the Eley–Rideal (ER) kinetic model incorporated with a correction factor to consider the catalyst fouling effect and pseudo-homogeneous (PH) kinetic model for the AA polymerization. The findings have shown the potential of recovering AA from the waste water stream via esterification. The concentrated AA solutions or larger amount of inhibitor should be adopted to prevent the catalyst fouling by the deposition of poly-acrylic acid on the catalyst surface.  相似文献   

11.
Biological control of odor gases has gained more attention in recent years. In this study, removal performance of a vertical bio-trickling filter inoculated with bacteria and fungi was studied. Bacteria and fungi were isolated from activated sludge in a sewage treatment plant. By adopting “three step immobilization method”, the bio-trickling filter could degrade pollutant immediately once hydrogen sulfide (H2S) passed. The optimal empty bed resident time was 20 s. The optimal elimination capacity was about 60 g H2S m?3 h?1 with removal efficiency of 95%. And the maximum elimination capacity was 170 g H2S m?3 h?1. Pressure drop was ranged between 5 and 15 mm H2O per bed over the whole operation. Removal efficiency was not affected obviously after terminating nutrient supply. The bio-trickling filter could recover back after shut down H2S gaseous and liquid supplies simultaneously. Microbial community structure in the bio-trickling filter was not changed significantly.Combining bacteria and fungi would be a better choice for inoculation into a bio-trickling filter because of the quickly degradation of H2S and rapid recovery under shut-down experiment. This is the first study attempting to combine bacteria and fungi for removal of H2S in a bio-trickling filter.  相似文献   

12.
Sodium 3,5,6-trichloropyridin-2-ol (STCP) is a necessary precursor compound for the production of chlorpyrifos and triclopyr, which are extensively used as pesticide and herbicide, respectively. In the process of STCP production, however, large amount of wastewater containing STCP is discharged, which causes increasingly environmental concerns. Therefore, it is of great significance to develop a rapid and effective method for the disposal of containing STCP contaminants. In this work, the thermal decomposition of STCP in sub- and supercritical water was investigated using a continuous tubular reactor. While STCP was stable below 280 °C, it could be effectively decomposed at elevated temperature. FT-IR spectra of the decomposition products indicated that the pyridine ring structure in the STCP molecule was stable even at temperatures up to 400 °C. The decomposition reaction was mainly caused by the substitution of Cl groups in the STCP molecule with OH groups, resulting in polyhydroxylated pyridines as the major decomposition product. Moreover, high pressure favored the substitution reaction. To completely decompose STCP into non-toxic or low toxic compounds, supercritical water oxidation (SCWO) was employed to evaluate the oxidation of STCP using H2O2 as an oxidant. It was found that STCP could be completely oxidized to H2O, CO2 and corresponding inorganic ammonium salts with an oxidation rate of 99%.  相似文献   

13.
In the present work, mesoporous simonkolleite–TiO2 composite was prepared with sol–gel method. The composite photocatalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), and Raman spectroscopy. Also, surface area and particle size were analyzed using BET equation. The photocatalytic hydrogen production with simultaneous decolorization of Remazole Red (F3B) dye was investigated over TiO2 and simonkolleite–TiO2 composite under UV–vis light irradiation. It was worthy to be noted that the rate of hydrogen production over simonkolleite–TiO2 is higher that produced over TiO2. The maximum amount of photocatalytic-produced hydrogen was 2.1 mmol and 3.3 mmol within 240 min using TiO2 and simonkolleite–TiO2 composite, respectively. The specific production rate of hydrogen from photocatalytic conversion of dye was calculated. Improvement of apparent quantum yield (22.07%) after 5 h was achieved upon addition of simonkolleite to TiO2. This high apparent quantum yield proves that the system proposed in this study could be a hopeful approach toward using sunlight energy as outlook energy source. The obtained results suggested that a new process for H2 production from wastewater could be achieved. The process also provides a method for degradation of organic pollutants with simultaneous H2 production.  相似文献   

14.
To reduce costs, high-purity chemical suppliers wash and reuse HDPE containers collected from users. To determine the lifetime of a container, the appearance of that container and the manufacturer's recommendations for its lifetime are generally considered. Guidelines for determining the lifetime of an HDPE container have not been clearly defined. The lack of these specifications may result in the leakage of high-purity chemicals in the storage, transportation and use of HDPE containers. To understand the effects of using high-purity chemicals (sulfuric acid (H2SO4) and nitric acid (HNO3)) on HDPE, this study revealed its effects by mechanical and thermal performance tests. According to the mechanical properties test results, the ductility and tensile strength of HDPE soaked H2SO4 and HNO3 decreased. HDPE immersed in HNO3 exhibited the lowest thermal stability by thermal performance testing. In summary, the degradation of HDPE is affected by storage conditions. For this study, HDPE only needs 60 days of immersion in HNO3, and its ductility and tensile strength will decline obviously. This study shows that when these containers are used for long-term storage of high purity chemicals, the mechanical properties (including ductility, ductility, and tensile strength) of HDPE containers tend to decrease. To decrease accidental leakage of chemicals due to aging of HDPE, comprehensive and approved regulations should be established for the loading, transport, and storage of HDPE containers.  相似文献   

15.
Thermal degradation of triacetone triperoxide (TATP) was studied using differential scanning calorimetry (DSC) and gas chromatography/mass spectrometry (GC/MS). TATP, a potential explosive material, is powerful organic peroxide (OP) that can be synthesized by available chemicals, such as acetone and hydrogen peroxide in the laboratory or industries. The thermokinetic parameters, such as exothermic onset temperature (T0) and heat of decomposition (ΔHd), were determined by DSC tests. The gas products from thermal degradation of TATP were identified using GC/MS technique.In this study, H2O2 was mixed with propanone (acetone) and H2SO4 catalysis that produced TATP. The T0 of TATP was determined to be 40 °C and Ea was calculated to be 65 kJ/mol. A thermal decomposition peak of H2O2 was analyzed by DSC and two thermal decomposition peaks of H2O2/propanone were determined. Therefore, H2O2/propanone mixture was applied to mix acid that was discovered a thermal decomposition peak (as TATP) in this study. According to risk assessment and analysis methodologies, risk assessment of TATP for the environmental and human safety issue was evaluated as 2-level of hazard probability rating (P) and 6-level of severity of consequences ratings (S). Therefore, the result of risk assessment is 12-point and was evaluated as “Undesirable” that should be enforced the effect of control method to reduce the risk.  相似文献   

16.
The techniques that may be applied to the removal of sulphide compounds from gases are briefly described and discussed. Scrubbing and adsorption on solids allow the recovery of sulphur either as such (H2S or sulphide organics) or, after oxidation, as elemental sulphur or SO2. This is actually a good choice when the concentration is high enough for sulphur recovery. When sulphur concentration is very low, techniques such as thermal and catalytic combustion, oxidative scrubbing and biofiltration might be preferable to attain deodorization. However, combustion converts sulphur into SO2, while oxidative scrubbing gives rise to sulphate-containing solutions. Biofiltration mineralizes sulphur in a natural environmental friendly way, without producing secondary contaminants.  相似文献   

17.
Control of odours should be considered to be a fundamental issue in order to site, design and manage sanitary landfills. With regard to construction and demolition (C&;D) debris, landfilling was the mainly adopted solution in many European Countries; in particular, gypsum drywalls can produce high concentrations of hydrogen sulphide (H2S) in landfill gas ranging from 7 ppm to 100 ppm. In some cases also dangerous concentrations until to 12,000 ppm were detected. In this paper H2S removal efficiency in a lab-scale vertical packed scrubber was investigated. Hydrogen sulphide abatement was evaluated for inlet H2S concentrations of 1000–100–10 ppm, adjusting scrubbing liquid pH in the range 9–12.5 by means of caustic soda (NaOH 2N solution). Moreover, best operating conditions for the system were defined as well as H2S abatement along the tower and liquid recirculation effectiveness in case of inlet H2S concentration of 10 ppm (typical odour concentration). Results showed that pH of 11.5 in scrubbing liquid could be considered the best value for removal of different inlet H2S concentrations, also taking into account parasitical consumption of NaOH due to CO2 absorption. Moreover, in case of continuous working of the system at H2S concentration of 10 ppm, strong removal efficiency was already obtained with a packed bed height of about 70 cm. Significant performances were ensured after 1 h of constant activity, consuming about 3 ml of soda per cubic meter of polluted air. Subsequently liquid blowdown was necessary.  相似文献   

18.
柏静 《环境与发展》2020,(4):120-121
目前厌氧系统已广泛应用于造纸废水处理,厌氧处理系统过程中产生大量的沼气,而沼气的热值很高,很有利用的价值,而本文结合笔者曾编制的某造纸废水处理厌氧技术改造环评探讨造纸污水处理厌氧系统沼气综合利用技术。该项目的实施,既减少了造纸废水的出水浓度,又提高了节能环保效益。  相似文献   

19.
活性自土生产过程中产生大量的含微细白土颗粒的强酸性废水,处理效果一直不佳.实验改进白土生产工艺,通过粒度控制,从根本上减少白土生产过程中超细白土颗粒的产生,循环利用硫酸和洗涤水以减少成本和对环境的污染.并对影响活性自土质量的主要生产工艺条件进行了比较系统的试验研究,确定了最佳工艺条件.成功地制备了脱色率92.88%,过滤速度21.27mL/mim的高效植物油活性白土.  相似文献   

20.
Latex is extensively used in industrial products. However, completing some processes at scale leads to unacceptable levels of risk that need to be quantified and mitigated. Systemic risks must be eliminated wherever possible, and safety takes priority over efficiency and quality. To assess the process risks accurately, four raw materials were examined in this study: polyvinyl acetate (PVA), latex process-initiator-ammonium persulfate (APS) and hydrogen peroxide (H2O2), and vinyl acetate monomer (VAM). The physicochemical composition of the PVA latex process was determined via calorimeters, including differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2). The calorimetry results showed that the protective colloid was a critical component in the polymerisation reaction. In addition, when adding initiators to the system, it is vital to observe the normal ratio of materials and keep the stirring system operating. The scenario system also simulated the effects of shutting down various inhibitory programs, including the build-up of free radicals that could result in a runaway reaction when the initiator was added in excess. On the other hand, the result of the risk matrix displayed as a medium level, indicating that although the probability of an accident is low, the resulting severity is at disaster level. As a result, this study provides process safety engineers with a reliable frame of reference for assessing the potential dangers in the PVA latex manufacturing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号