首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The aim of this work is the study of p-nitrophenol (PNP) removal, as a nitroaromatic compound, using a hybridized photo-thermally activated potassium persulfate (KPS) in a fully recycled batch reactor. Response surface method was used for modeling the process. Reaction temperature, KPS initial dosage and initial pH of the solution were selected as variables, besides PNP degradation efficiency was selected as the response. ANOVA analysis reveals that a second order polynomial model with F-value of 41.7, p-value of 0.0001 and regression coefficient of 0.95 is able to predict the response. Based on the model, the process optimum conditions were introduced as initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 66 °C. Also experiments showed that using thermolysis and photolysis of the persulfate simultaneously, the role of thermolysis is not considerable. A pseudo first order kinetic model was established to describe the degradation reaction. Operational cost, as a vital industrial criterion, was estimated so that the condition of initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 25 °C showed the highest cost effective case. Under the preferred mild condition, the process will reach to 84% and 89% of degradation and mineralization efficiencies, after 60 and 120 min, respectively.  相似文献   

2.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

3.
This paper addresses the decolorization and degradation of acid dye by a heterogeneous photocatalytic process using immobilized nano-sized TiO2 particles as the photocatalyst. Sackcloth fiber was used as a support to immobilize the nano-sized TiO2 photocatalyst. The structural properties of the immobilized photocatalyst were characterized by XRD, SEM and EDX. UV–Vis absorption spectroscopy and the measurement of the chemical oxygen demand (COD) were also used for the process performance studies. The XRD results did not show significant changes in the structure of P25 as a consequence of the immobilization procedure. The formation of titania crystallites in the sackcloth fiber was confirmed by SEM/EDX. The photocatalytic activities of TiO2-coated sackcloth fiber catalyst were evaluated using Acid Black 26 as a model organic contaminant and using UV-A radiation. Experimental results showed that after 60 min, the degradation of Acid Black 26 with the immobilized TiO2 particles was higher than that with plain TiO2. Based on the COD results, after 3 h, the TiO2-coated sackcloth fiber effectively decomposed all of the organic compounds present in dye solution under the studied experimental conditions. The effects of the oxidant H2O2, initial dye concentration and pH on the photocatalytic degradation were also investigated. The presence of CO32? as a dissolved inorganic anion had the highest inhibitory effect on the decolorization of the dye, when compared with the other anions investigated. Kinetics analysis indicates that the photocatalytic decolorization rate of Acid Black 26 can be described by a pseudo-first-order model.  相似文献   

4.
Concerning the high volume of wastewater containing dye in Iran and its adverse effects, it is necessary to develop scientific solutions for treating these wastewaters. The aim of this study was to evaluate the efficiency of the alumina-coated multi-walled carbon nanotubes in removing the Reactive Red 198 (RR 198) and Blue 19 (RB 19) dyes. Synthetic samples including dye with different concentrations were prepared. These samples were put in contact with different contents of alumina/multi-walled carbon nanotubes, in different pH values, in different contact times, different temperatures and the presence of sodium sulfate or sodium carbonate. The optimum pH, dye concentration and temperature for removal of the two dyes was 3, 50 mg l−1 and 25 °C, respectively. The optimum adsorbent dose for removal the RR 198 dye was 0.5 g l−1 and for Blue 19 was 0.4 g l−1. The optimum contact time for RR 198 was 150 min and RB 19 was 180 min. In this condition, maximum removal efficiency for RR 198 and RB 19 was 91.54% and 93.51%, respectively. The adsorption study was analyzed kinetically, and the results revealed that the adsorption fitted a pseudo-second order kinetic model. According to these results alumina/multi-walled carbon nanotubes can effectively remove RR 198 and RB 19 from aqueous solutions.  相似文献   

5.
The use of a new biosorbent derived from Abelmoschus esculentus (A. esculentus) seed for the removal of Acid Blue 113 (AB113) in aqueous solutions was investigated in batch mode. Biosorption studies were carried out under varying operational parameters including initial pH, biosorbent dosage, contact time, initial dye concentration and temperature. The results indicated that the biosorption properties were strongly dependent on initial pH. Fourier transform infrared spectroscopy analysis revealed that hydroxyl, carboxylic and amide functional groups present on the biosorbent surface were involved in the dye removal process. Equilibrium data were best fitted by the Langmuir model. The maximum biosorption capacity was 169.9 ± 3.1 mg g−1 at 25 °C and initial pH 5.5. The kinetic data were in good agreement with the pseudo-second-order kinetic model. The process was controlled by diffusion through boundary layer at the initial stage followed by intra-particle diffusion at the later stage. Thermodynamic evaluation showed that the process was endothermic and spontaneous. The present study suggests that A. esculentus seed with maximum biosorption capacity which compared well with values reported in the literature can be a potential biosorbent for AB113 dye removal.  相似文献   

6.
An ozonation process was performed using a recycled electrochemical ozone generator system. A titanium based electrode, coated with nanocomposite of Sn–Sb–Ni was applied as anode in a laboratory-made electrochemical reactor. A constant flow rate of 192 mg/h of generated ozone was entered to an ozonation reactor to contact with a typical target pollutant, i.e., Rhodamine B (Rh.B) molecules in aqueous solution. Four operational parameters such as: initial dye concentration, pH, temperature and the contact time were evaluated for the ozonation process. Experimental findings revealed that for a solution of 8 mg/L of the dye, the degradation efficiency could reach to 99.5% after 30 min at pH 3.7 and temperature of 45 °C as the optimum conditions. Kinetic studies showed that a second order equation can describe the ozonation adequately well under different temperatures. Also, considering to the importance of process simulation, a three-layered feed forward back propagation artificial neural network model was developed. Sensitivity analysis indicated order of the operational parameter's relative importance on the model output as: time  pH > Rh . B initial concentration > temperature.  相似文献   

7.
In the present work, mesoporous simonkolleite–TiO2 composite was prepared with sol–gel method. The composite photocatalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), and Raman spectroscopy. Also, surface area and particle size were analyzed using BET equation. The photocatalytic hydrogen production with simultaneous decolorization of Remazole Red (F3B) dye was investigated over TiO2 and simonkolleite–TiO2 composite under UV–vis light irradiation. It was worthy to be noted that the rate of hydrogen production over simonkolleite–TiO2 is higher that produced over TiO2. The maximum amount of photocatalytic-produced hydrogen was 2.1 mmol and 3.3 mmol within 240 min using TiO2 and simonkolleite–TiO2 composite, respectively. The specific production rate of hydrogen from photocatalytic conversion of dye was calculated. Improvement of apparent quantum yield (22.07%) after 5 h was achieved upon addition of simonkolleite to TiO2. This high apparent quantum yield proves that the system proposed in this study could be a hopeful approach toward using sunlight energy as outlook energy source. The obtained results suggested that a new process for H2 production from wastewater could be achieved. The process also provides a method for degradation of organic pollutants with simultaneous H2 production.  相似文献   

8.
The present study reported a method for removal of As(III) from water solution by a novel hybrid material (Ce-HAHCl). The hybrid material was synthesized by sol–gel method and was characterized by XRD, FTIR, SEM–EDS and TGA–DTA. Batch adsorption experiments were conducted as a function of different variables like adsorbent dose, pH, contact time, agitation speed, initial concentration and temperature. The experimental studies revealed that maximum removal percentage is 98.85 at optimum condition: pH = 5.0, agitation speed = 180 rpm, temperature = 60 °C and contact time = 80 min using 9 g L−1 of adsorbent dose for initial As(III) concentration of 10 mg L−1. Using adsorbent dose of 10 g L−1, the maximum removal percentage remains same with initial As(III) concentration of 25 mg L−1 (or 50 mg L−1). The maximum adsorption capacity of the material is found to be 182.6 mg g−1. Subsequently, the experimental results are used for developing a valid model based on back propagation (BP) learning algorithm with artificial neural networking (BP-ANN) for prediction of removal efficiency. The adequacy of the model (BP-ANN) is checked by value of the absolute relative percentage error (0.293) and correlation coefficient (R2 = 0.975). Comparison of experimental and predictive model results show that the model can predict the adsorption efficiency with acceptable accuracy.  相似文献   

9.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

10.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

11.
Cadmium is an extremely toxic metal commonly found in industrial regions. Anthropogenic activity is the most important factor causing its interference to water, soil and air resources. The aim of many researches is to present remediation strategy or to remove cadmium from contaminated resources through an economical and efficient method. Cadmium adsorption from aqueous solution using Alhaji maurorum seed adsorbent has been investigated and optimized in this study. Moreover, isotherm and kinetics of adsorption process was studied. The seeds are washed by distilled water after separation from the plant, and then dried in room temperature for 48 h. They are powdered by grinder and passed through sieve no.18 as well. Adsorption process was optimized in 4 steps regarding pH, contact time, adsorption dose and initial concentration of cadmium effects. The cadmium concentration in solution was measured using ICP-OES method. The results of optimization tests showed that the optimum condition of cadmium adsorption (85.5% removal) occurs at pH of 6.5 with 20 g/L of adsorption dose for 45 min. In addition, the efficiency of adsorption process increases as the cadmium concentration reduces in the initial solution. Adsorption process follows the pseudo second-order kinetics and Freundlich isotherm with correlation coefficients of 0.999 and 0.99, respectively. According to the findings of this analysis, it was concluded that A. maurorum seed is a good biological adsorbent for adsorbing cadmium from aqueous solution.  相似文献   

12.
The present study investigates the adsorption potential of Chrysanthemum indicum flower in its raw (CIF-R) and biochar (CIF-BC) form for the removal of cobalt ions from aqueous solution. The adsorbents were characterized for their surface area using BET analysis, surface morphology and elemental composition with SEM-EDAX and for the presence of functional groups by FTIR analysis. Batch adsorption experiments were carried out to evaluate the effect of process parameters, viz. pH, adsorbent dosage, initial metal ion concentration, contact time, stirring speed, presence of interfering ions and temperature on the adsorption of Co(II) ion using both the adsorbents. The optimum conditions for maximum removal of Co(II) ion was ascertained to be pH 5 for both adsorbents, adsorbent dose of 4 g/L and 3 g/L, equilibrium time of 60 min and 45 min, respectively, for CIF-R and CIF-BC. The maximum adsorption capacity of CIF-R and CIF-BC was found to be 14.84 mg/g and 45.44 mg/g, respectively, for the removal of Co(II) ion. The mechanism of adsorption was studied using different models of adsorption kinetics, isotherms and thermodynamics. It was inferred that Co(II) adsorption on both CIF-R and CIF-BC followed pseudo-second order kinetics and Langmuir isotherm model with the process being spontaneous and endothermic in nature.  相似文献   

13.
Cationic polyelectrolyte promoted effective attachment of iron oxide nanoparticles (IONPs) onto microalgal cells through electrostatic attraction. Poly(diallyldimethylammonium chloride) (PDDA) and chitosan (ChiL), both are cationic polymer, are feasible to act as binding agent to promote rapid magnetophoretic separation of Chlorella sp. through low gradient magnetic separation (LGMS) with field gradient ▿B less than 80 T/m in real time. Cell separation efficiency up to 98% for the case of PDDA and 99% for the case of ChiL can be achieved in 6 min when 3 × 107 cells/mL Chlorella sp. are exposed to 300 mg/L surface functionalized-IONPs (SF-IONPs). Different polyelectrolytes do not give significant effect on cell separation efficiency as long as the particle attachment occurred. However, the PDDA is more preferable as the binder for all type of microalgae medium than the chitosan (ChiL) since it is not pH dependent. SF-IONPs coated with PDDA guarantee the cell separation performance for all pH range of cell medium, with 98.21 ± 0.40% at pH 8.84. On the other hand, the ChiL performance will be affected by the cell medium pH, with only 22.93 ± 31.03% biomass recovery at pH 9.25.  相似文献   

14.
Simultaneous photocatalytic reduction of poisonous Cr(VI) and Ni(II) ions, coupled with photocatalytic oxidation of sodium dodecyl benzene sulfonate (SDBS) were studied with a trace amount of commercial titania nanoparticles and by means of a direct-photo-irradiation reactor. The co-presence of metal ions and SDBS causes metal ions reduction as well as SDBS oxidation to enhance and energy efficiency to improve. XRD, XPS and FTIR analysis were used to characterize TiO2 particles before and after usage with the aim of evaluating the mechanism of reactions. The effect of major operating parameters, pH and temperature, was investigated. Under conditions of [Cr(VI)]0 = [Ni(II)]0 = 5 mg/L, [SDBS]0 = 10 mg/L, [TiO2] = 40 mg/L, pH 6 and T = 35 °C; the removal efficiencies of 55.4%, 71.2% and 57.2% were obtained, respectively, for Cr(VI) and Ni(II) reduction, as well as for SDBS oxidation, after 110 min operation. The relevant kinetic model jointed with the Arrhenius equation was introduced. Pseudo-first-order reactions are relevant. Energy consumption (electrical and thermal) evaluations revealed that operations at higher temperatures provide significant cost reduction. Meantime, a criterion was proposed for a consistent assessment of this kind of processes.  相似文献   

15.
Cationic surfactant (Hexadecyltrimenthylammonium chloride) modified bentonite clay was prepared and systematically studied for its adsorption behavior as an efficient adsorbent for the removal of basic dyes such as methylene blue (MB), crystal violet (CV) and Rhodamine B (RB) from aqueous phase. Organo modified clay shows better capacity for the removal of three dyes. The adsorption process was found to be dependent on pH and initial dye concentration. The maximum dye sorption was found to be at a pH of 9.0 (99.99% for MB, 95.0% for CV and 83.0% for RB). The adsorption capacity for the dyes was found to be 399.74, 365.11 and 324.36 μmol/g for MB, CV and RB, respectively at 30 °C. The equilibrium uptake was attained within 240 min. The kinetic studies were revealed that sorption follows a pseudo-second-order kinetic model which indicates chemisorption between adsorbent and adsorbate molecules. Adsorption isotherm indicates non-energetically adsorption sites which fit with Freundlich isotherm model. The fitness of kinetics and isotherm models was evaluated by using HYBRID error analysis function. Competitive adsorptions of dyes were studied by using binary component systems.  相似文献   

16.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

17.
An air-recirculated stripping involved two processes and did not require any pretreatment. First, stripping CO2 decreased the buffer capacity of the anaerobic digestate, thereby reducing the amount of lime used to achieve a high pH. Second, lime was added to increase pH and remove ammonia from the anaerobic digestate of pig manure. pH increased from 8.03 to 8.86 by stripping CO2 in the first process (gas-to-liquid ratio = 180) and further reached 12.38 in the second process (gas-to-liquid ratio = 300). During process optimization, the maximum ammonia removal efficiency reached 96.78% with a lime dose of 22.13 g. The value was close to 98.25%, which was the optimal result predicted by response surface methodology using the software Design-Expert 8.05b. All these results indicated that air-recirculated stripping coupled with absorption was a promising technology for the removal and recovery of nitrogen in the anaerobic digestate of pig manure.  相似文献   

18.
The fate of trace tetracycline, tetracycline resistant bacteria (TRB) and tetracycline resistant genes (TRGs) in an improved anaerobic-anoxic-oxic (AAO) wastewater treatment plant (WWTP) was investigated in this study. Quantitative real-time polymerase chain reaction (qPCR) and conventional heterotrophic plate count method were used to measure eight tet genes (tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX) and TRB, respectively. The TRB percent of total heterotrophic bacteria (THB) is about 1.31–24.1% in WWTP influent. Tet gene abundance in the WWTP varied greatly among the gene types. The concentrations of TRGs in effluent samples ranged from 7.11 × 10−9 to 1.53 × 10−4 copies/copy 16S rRNA gene. TRB and THB, tetM and tetO, tetE and tetX, but not the others, showed a significant correlation with each other (p < 0.01). The relationships between ribosomal protection protein genes, enzymatic modification gene and corresponding concentrations of antibiotics were found to be considerably significant (R2 = 0.898, p < 0.01 for ribosomal protection protein genes and R2 = 0.872, p < 0.05 for enzymatic modification gene).  相似文献   

19.
The aim of the present study is to explore the process dynamics of the safety compliance climate and work relationships, including their antecedents and consequences. After investigating the many dimensions of safety compliance climate and of work relationships, the study concludes that a multi-component measure is needed to fully assess all of their dimensions. With respect to the impacting positively on safety compliance legislation, the present study found the following factors: “contribution measures”, “concrete preventive measures” and “risk assessment process”. For risk assessment factors on safety compliance the study identified “planning, guidelines, policy, management”, “prioritization of proactive measures”, “results in cooperation and information” and “active use of risks assessment document”. In a regression model for the workers, both risk assessment process and contribution measures had a statistically highly significant (p < 0.001) effect on concrete preventive measures. In the regression analysis of the employers risk assessment process had a statistically significant (p < 0.01) effect and contribution measures had a statistically highly significant (p < 0.001) effect on concrete preventive measures.  相似文献   

20.
The potential to remove Pb(II) ion from wastewater treatment systems using raw and treated maize stover through adsorption was investigated in batch experiments. To achieve this, batch mode experiments were conducted choosing specific parameters such as pH (2–8), dosage concentration (2–30 g L−1), contact time (5–180 min), temperature (20–45 °C) and metal ion concentrations (10–50 mg L−1). Adsorption was pH-dependent showing a maximum at pH value 5. The equilibrium sorption capacities of raw and treated maize stover were 19.65 and 27.10 mg g−1, respectively. The adsorption data fitted well to the Langmuir isotherm model. Kinetic studies revealed that the adsorption process followed pseudo-second-order model. The calculated thermodynamic parameters showed that the adsorption of Pb(II) was spontaneous and exothermic in nature. Consequently, this study demonstrated that both raw and treated maize stover could be used as adsorbents for the treatment of Pb(II) from industrial wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号