首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A large vapour cloud explosion (VCE) followed by a fire is one of the most dangerous and high consequence events that can occur in petrochemical facilities. The current process of safety practice in the industry in VCE assessment is to assume that all VCEs are deflagration. This assumption has been considered for nearly three decades. In recent years, major fire and VCE incidents in fuel storage depots gained considerable attention in extreme high explosion overpressure due to the transition from Deflagration to Detonation (DDT). Though the possibility of DDTs is lower than deflagrations, they have been identified in some of the most recent large-scale VCE incidents, including Buncefield (UK), 2005, San Juan explosion (US), 2009, and IOCL Jaipur (India), 2009 event. Such an incident established the need to understand not only VCE but also the importance of avoiding the escalation of minor incidents into much more devastating consequences.Despite decades of research, understanding of the fundamental physical mechanisms and governing factors of deflagration-to detonation transition (DDT) transition remains mostly elusive. An extreme multi-scale, multi-physics nature of this process uncertainly makes DDT one of the “Grand Challenge” problems of typical physics, and any significant developments toward its assured insistence would require revolutionary step forward in experiments, theory, and numerical modelling. Under certain circumstances, nevertheless, it is possible for DDT to occur, and this can be followed by a propagating detonation that quickly consumes the remaining detonable cloud. In a detonable cloud, a detonation creates the worst accident that can happen. Because detonation overpressures are much higher than those in a deflagration and continue through the entire detonable cloud, the damage from a DDT event is more severe. The consideration of detonation in hazard and risk assessment would identify new escalation potentials and recognize critical buildings impacted. This knowledge will allow more effective management of this hazard.The main conclusion from this paper is that detonations did occur in Jaipur accident at least part of the VCE accidents. The vapour cloud explosion could not have been caused by a deflagration alone, given the widespread occurrence of high overpressures and directional indicators in open uncongested areas containing the cloud. Additionally, the major incident has left many safety issues behind, which must be repeatedly addressed. It reveals that adequate safety measures were either underestimated or not accounted for seriously. This article highlights the aftermath of the IOCL Jaipur incident and addresses challenges put forward by it.  相似文献   

2.
Blast damage to storage tanks and steel clad buildings   总被引:1,自引:0,他引:1  
The 2005 Buncefield vapour cloud explosion showed the huge cost associated with blast damage to commercial property surrounding a major explosion incident. In most cases there was serious disruption to business activity; in many cases the buildings had to be demolished or abandoned for long periods until extensive repairs were carried out.Another key feature of this and other recent vapour cloud explosions has been the damage done to storage tanks. The blasts almost invariably cause immediate top and bund fires in any tanks surrounded by the vapour – even if they contain relatively high flashpoint materials such as diesel.The first part of this paper describes the patterns of damage observed in buildings in the industrial estates around Buncefield. Methods for assessing the degree of external and internal damage are presented.The second part of the paper deals with failure modes and ignition of various types of liquid storage tank during vapour cloud explosions. Again, the Buncefield data provides excellent examples that illustrate the importance of tank design, fill level, location relative to the cloud, etc.  相似文献   

3.
The effectiveness of the application of CFD to vapour cloud explosion (VCE) modelling depends on the accuracy with which geometrical details of the obstacles likely to be encountered by the vapour cloud are represented and the correctness with which turbulence is predicted. This is because the severity of a VCE strongly depends on the types of obstacles encountered by the cloud undergoing combustion; the turbulence generated by the obstacles influences flame speed and feeds the process of explosion through enhanced mixing of fuel and oxidant. In this paper a CFD-based method is proposed on the basis of the author’s finding that among the various models available for assessing turbulence, the realizable k-? model yields results closer to experimental findings than the other, more frequently used, turbulence models if used in conjunction with the eddy-dissipation model. The applicability of the method has been demonstrated in simulating the dispersion and ignition of a typical vapour cloud formed as a result of a spill from a liquid petroleum gas (LPG) tank situated in a refinery. The simulation made it possible to assess the overpressures resulting from the combustion of the flammable vapour cloud. The phenomenon of flame acceleration, which is a characteristic of combustion enhanced in the presence of obstacles, was clearly observed. Comparison of the results with an oft-used commercial software reveals that the present CFD-based method achieves a more realistic simulation of the VCE phenomena.  相似文献   

4.
At around 06.00 on Sunday 11th December 2005, a vapour cloud explosion occurred at Buncefield Oil Storage Depot, Hemel Hempstead, Hertfordshire, UK, generating significant blast pressures. However, as a storage site, the Buncefield terminal had very little pipework congestion and at first sight would not have been considered as having much potential for a vapour cloud explosion. As a consequence, one of the actions of the Buncefield Major Incident Investigation Board (BMIIB) was to initiate a review of the possible causes of the severe explosion on the site. This review was then extended to a Joint Industry Project, Phase 1 of which has offered an explanation of the cause of the explosion. The conclusions are summarized along with reference to relevant experimental studies, illustrating how the elements of the explanation were already known. The implications of the incident for the assessment of vapour cloud explosion hazards will be discussed, both in terms of understanding worst case consequences and the use of risk based approaches.  相似文献   

5.
This paper briefly recapitulates some of the major accidents in chemical process industries which occurred during 1926–1997. These case studies have been analysed with a view to understand the damage potential of various types of accidents, and the common causes or errors which have led to disasters. An analysis of different types of accidental events such as fire, explosion and toxic release has also been done to assess the damage potential of such events. It is revealed that vapour cloud explosion (VCE) poses the greatest risk of damage. The study highlights the need for risk assessment in chemical process industries.  相似文献   

6.
On November 22, 2006 the largest explosion in the history of Massachusetts occurred in Danvers, MA at approximately 2:46 am. This paper presents a detailed analysis into the potential causes and lessons learned from the Danvers explosion. Other investigative groups concluded that the cause of the explosion was an overheated production tank. However, the analyses presented here demonstrate that their proposed scenario could not have occurred and that other potential causes are more likely.Using the computational fluid dynamics tool FLACS, it was possible to investigate the chain of events leading to the explosion, including: (1) evaluating various leak scenarios by modeling the dispersion and mixing of gases and vapors within the facility, (2) evaluating potential ignition sources within the facility of the flammable fuel–air mixture, and (3) evaluating the explosion itself by comparing the resulting overpressures of the exploding fuel–air cloud with the structural response of the facility and the observed near-field and far-field blast damage. These results, along with key witness statements and other analyses, provide valuable insight into the likely cause of this incident. Based on the results of our detailed analysis, lessons learned regarding the investigative procedure and methods for mitigating this and future explosions are discussed.  相似文献   

7.
Devastating vapour cloud explosions can only develop under appropriate (boundary) conditions. The record of vapour cloud explosion incidents from the past demonstrates that these conditions are readily met by the congestion by process equipment at (petro-) chemical plant sites. Therefore, the possibility of an accidental release of a flammable and a subsequent vapour cloud explosion is a major hazardous scenario considered in any risk assessment with regard to the process industries.If an extended flammable vapour cloud at a chemical plant site extends over more than one process unit, which are separated by lanes of sufficient width, the vapour cloud explosion on ignition develops the same number of separate blasts. If, on the other hand, the separation between the units is insufficient, the vapour cloud explosion develops one big blast. The critical separation distance (SD) is the criterion that allows discriminating in this matter for blast modelling purposes.This paper summarises some major results of an experimental research programme with the objective to develop practical guidelines with regard to the critical SD. To this end, a series of small-scale explosion experiments have been performed with vapour clouds containing two separate configurations of obstacles. Blast overpressures at various stations around have been recorded while the SD between the two configurations of obstacles was varied.The experimental programme resulted in some clear indications for the extent of the critical SD between separate areas of congestion. On the basis of safety and conservatism, these indications have been rendered into a concrete guideline. Application of this guideline would allow a greater accuracy in the modelling of blast from vapour cloud explosions.  相似文献   

8.
Massive offshore and onshore storage of fuel have led the international community to raise questions about the hazards on the surrounding installations and people. Among the possible accidental scenarios when cryogenic gas as liquefied natural gas (LNG) is spilled on water at a very fast rate, the phenomenon of rapid phase transition (RPT) may occur: large amounts of energy are released during phase transition which can generate explosions. The related consequences should be added to the possible consequences of fire in terms of flash fire, fireball, pool fire, and vapour cloud explosion for confined and congested geometry surrounding the release point.In this paper, the analysis of RPT of LNG has been studied from the point of view of blast wave production, through ab initio acoustic analysis for monopole source. Maximum overpressures, as calculated at the source point and along the blast pathway are compared with results of large scale experiments. Safety distances are given for the sake of comparison with threshold distances reported in the open literature.  相似文献   

9.
In this paper, a new method based on Fuzzy theory is presented to estimate the occurrence possibility of vapor cloud explosion (VCE) of flammable materials. This new method helps the analyst to overcome some uncertainties associated with estimating VCE possibility with the Event Tree (ET) technique. In this multi-variable model, the physical properties of the released material and the characteristics of the surrounding environment are used as the parameters specifying the occurrence possibility of intermediate events leading to a VCE. Factors such as area classification, degree of congestion of a plant and release rate are notably affecting the output results. Moreover, the proposed method benefits from experts' opinions in the estimation of the VCE possibility. A refrigeration cycle is used as the case study and the probability of VCE occurrence is determined for different scenarios. In this study, sensitivity analysis is performed on the model parameters to assess their effect on the final values of the VCE possibility. Furthermore, the results are compared with the results obtained using other existing models.  相似文献   

10.
Past-accident analysis shows that most dangerous incidents are related to process operations. Often these operations are carried out under high pressures and/or high temperatures. The consequences, therefore, are significant. A scientific analysis of past accidents which led to vapour cloud explosion has been performed. The analysis has provided vital information for most probable accident scenarios for a new situation. Factors such as chemical characteristics, its release mode, time etc. show trends and relationships for the occurrence of vapour cloud explosions.  相似文献   

11.
Deflagration explosions of coal dust clouds and flammable gases are a major safety concern in coal mining industry. Accidental fire and explosion caused by coal dust cloud can impose substantial losses and damages to people and properties in underground coal mines. Hybrid mixtures of methane and coal dust have the potential to reduce the minimum activation energy of a combustion reaction. In this study the Minimum Explosion Concentration (MEC), Over Pressure Rise (OPR), deflagration index for gas and dust hybrid mixtures (Kst) and explosive region of hybrid fuel mixtures present in Ventilation Air Methane (VAM) were investigated. Experiments were carried out according to the ASTM E1226-12 guideline utilising a 20 L spherical shape apparatus specifically designed for this purpose.Resultsobtained from this study have shown that the presence of methane significantly affects explosion characteristics of coal dust clouds. Dilute concentrations of methane, 0.75–1.25%, resulted in coal dust clouds OPR increasing from 0.3 bar to 2.2 bar and boosting the Kst value from 10 bar m s−1 to 25 bar m s−1. The explosion characteristics were also affected by the ignitors’ energy; for instance, for a coal dust cloud concentration of 50 g m−3 the OPR recorded was 0.09 bar when a 1 kJ chemical ignitor was used, while, 0.75 bar (OPR) was recorded when a 10 kJ chemical ignitor was used.For the first time, new explosion regions were identified for diluted methane-coal dust cloud mixtures when using 1, 5 and 10 kJ ignitors. Finally, the Le-Chatelier mixing rule was modified to predict the lower explosion limit of methane-coal dust cloud hybrid mixtures considering the energy of the ignitors.  相似文献   

12.
The current study estimates the radiation flux emitted from hot extended gas clouds characteristic of vapour cloud explosions along with the corresponding level of irradiance posed on particles suspended in the unburnt part of the cloud ahead of an advancing flame front. The data presented permits an assessment of the plausibility of combustion initiation by such particles due to forward thermal radiation. The thermal radiation will depend on the emissivity of the burned volume, which relates to the concentration of gaseous and particulate combustion products. A sensitivity analysis has been carried out to account for variations in the equivalence ratio, mixture pressure and radiative heat losses. The spatial distribution of irradiance ahead of the flame front has been computed by introducing appropriate geometrical factors to explore the impact of cloud size. Using fuel rich ethylene-air mixtures it has been shown that high flame emissivities can be achieved at path lengths of order 1 m even in the presence of very low soot volume fractions. The emissivity of gas-soot mixtures will hence be mainly determined by the soot concentration and to a lesser extent by the mixture temperature. Our analysis suggests that the role of forward thermal radiation as a contributing factor to flame propagation in large scale vapour cloud explosions can not currently be ruled out.  相似文献   

13.
Methane/coal dust/air explosions under strong ignition conditions have been studied in a 199 mm inner diameter and 30.8 m long horizontal tube. A fuel gas/air manifold assembly was used to introduce methane and air into the experimental tube, and an array of 44 equally spaced dust dispersion units was used to disperse coal dust particles into the tube. The methane/coal dust/air mixture was ignited by a 7 m long epoxypropane mist cloud explosion. A deflagration-to-detonation transition (DDT) was observed, and a self-sustained detonation wave characterized by the existence of a transverse wave was propagated in the methane/coal dust/air mixtures.The suppressing effects on methane/coal dust/air mixture explosions of three solid particle suppressing agents have been studied. Coal dust and the suppressing agent were injected into the experimental tube by the dust dispersion units. The length of the suppression was 14 m. The suppression agents examined in this study comprised ABC powder, SiO2 powder, and rock dust powder (CaCO3). Methane/coal dust/air explosions can be efficiently suppressed by the suppression agents characterized by the rapid decrease in overpressure and propagating velocity of the explosion waves.  相似文献   

14.
为研究燃料氢气泄漏、爆炸的特性和规律,预防高压储氢系统中氢气泄漏爆炸事故发生,以加氢站为背景,数值仿真45 MPa高压储罐氢气泄漏并引发爆炸事故,分析泄漏爆炸动力学性质以及爆炸波在非均匀氢气浓度中的传播机制。同时,基于泄漏爆炸事故演化的力学机理,开展氢气泄漏爆炸动态风险分析,针对氢气不同泄漏量,建立泄漏扩散形成的气云体积、气云爆炸产生的冲击波与空间x,z方向上危害距离之间关系。研究结果表明:氢气泄漏过程中,气云氢气浓度变化与流场雷诺数具有较好一致性;氢气扩散受到高压储氢罐周围装置影响,流场中氢气浓度分布不均匀;当发生燃烧爆炸事故时,冲击波参数和湍动能变化梯度大;得到复杂布局区域冲击波超压峰值与比例距离之间关系式,其相比于理论方法更精细、计算结果更准确。研究结果可为降低高压储氢系统泄漏爆炸事故后果、采取有效防护措施提供一定依据。  相似文献   

15.
The methods used to evaluate the consequences of a vapor cloud explosion assume deflagrations within congested process pipework regions and consequently a significant effort has been invested in developing models to estimate the severity of these deflagrations. Models range from the simpler screening approaches to detailed Computational Fluid Dynamics. There is clear evidence from large scale experiments and incidents that transition from deflagration to detonation is credible and has occurred and it is the contention of this paper that deflagration is only the first stage in many major vapor cloud explosions and that detonation is readily foreseeable. Why does this matter? The methods currently used in the design and location of buildings on and around process sites are based on an incomplete picture of vapor cloud explosions. Whilst this might not have a significant effect in some cases, it is shown that there is the potential to significantly underestimate the explosion hazard. This will result in occupied buildings either being placed in the wrong location or under-designed for the explosion threat, increasing the risks to personnel on these sites.  相似文献   

16.
17.
18.
The separation distance (or pitch) between two successive obstacles or rows of obstacles is an important parameter in the acceleration of flame propagation and increase in explosion severity. Whilst this is generally recognised, it has received little specific attention by investigators. In this work a vented cylindrical vessel 162 mm in diameter 4.5 m long was used to study the effect of separation distance of two low blockage (30%) obstacles. The set up was demonstrated to produce overpressure through the fast flame speeds generated (i.e. in a similar mechanism to vapour cloud explosions). A worst case separation distance was found to be 1.75 m which produced close to 3 bar overpressure and a flame speed of about 500 m/s. These values were of the order of twice the overpressure and flame speed with a double obstacle separated 2.75 m (83 characteristic obstacle length scales) apart. The profile of effects with separation distance was shown to agree with the cold flow turbulence profile determined in cold flows by other researchers. However, the present results showed that the maximum effect in explosions is experienced further downstream than the position of maximum turbulence determined in the cold flow studies. It is suggested that this may be due to the convection of the turbulence profile by the propagating flame. The present results would suggest that in many previous studies of repeated obstacles the separation distance investigated might not have included the worst case set up, and therefore existing explosion protection guidelines may not be derived from worst case scenarios.  相似文献   

19.
The production and storage of liquefied petroleum gas (LPG) is gradually becoming larger and more intensive, which greatly increases the risk of the domino effect of an explosion accident in a storage tank area while improving production and management efficiency. This paper describes the construction of the domino effect scene of an explosion accident in an LPG storage tank area, the analysis of the characteristics of the LPG tank explosion shock wave and the target storage tank failure, and the creation of an ANSYS numerical model to derive the development trend and expansion law of the domino accident in the LPG storage tank area. The research showed that: 400 m3 tank T1 explosion shock waves spread to T2, T4, T5, T3, and T6, and the tank overpressures of 303 kPa, 303 kPa, 172 kPa, 81 kPa, and 61 kPa respectively. The critical values of the target storage tank failure overpressure-range threshold were 70 kPa and 60 m. After the explosion of the initial unit T1 tank, at 38 ms, the T2 and T4 storage tanks failed and exploded; at 56 ms, the T5 storage tank exploded for the third time; at 82 ms, the T3 storage tank exploded for the fourth time; and at 102 ms, the T6 storage tank exploded for the fifth time. With the increase of explosion sources, the failure overpressure of the target storage tank increased, and the interval between explosions continuously shortened, which reflected the expansion effect of the domino accident. The domino accident situation deduction in the LPG storage tank area provided a scientific basis for the safety layout, accident prevention and control, emergency rescue, and management of a chemical industry park.  相似文献   

20.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号