首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
Explosibility studies of hybrid methane/air/cork dust mixtures were carried out in a near-spherical 22.7 L explosibility test chamber, using 2500 J pyrotechnic ignitors. The suspension dust burned as methane/air/dust clouds and the uniformity of the cork dust dispersion inside the chamber was evaluated through optical dust probes and during the explosion the pressure and the temperature evolution inside the reactor were measured. Tested dust particles had mass median diameter of 71.3 μm and the covered dust cloud concentration was up to 550 g/m3. Measured explosions parameters included minimum explosion concentration, maximum explosion pressures and maximum rate of pressure rise. The cork dust explosion behavior in hybrid methane/air mixtures was studied for atmospheres with 1.98 and 3.5% (v/v) of methane. The effect of methane content on the explosions characteristic parameters was evaluated. The conclusion is that the risk and explosion danger rises with the increase of methane concentration characterized by the reduction of the minimum dust explosion concentration, as methane content increases in the atmosphere. The maximum explosion pressure is not very much sensitive to the methane content and only for the system with 3.5% (v/v) of methane it was observed an increase of maximum rate of pressure rise, when compared with the value obtained for the air/dust system.  相似文献   

2.
Nitrocellulose is a flammable compound produced by cellulose nitration. The nitrocellulose production and handling are associated with a risk of fire and explosion. Nitrocellulose is used as either collodion cotton (<12.5% N) or as an explosive (>12.5% N). Nitrocellulose is a fibrous or powdered substance and may detonate or burn upon certain conditions. The article compares the combustion parameters of dry nitrocellulose in the KV-150M2-UIBE explosion chamber at the concentrations of 250, 500 and 750 g m−3. To ignite a nitrocellulose sample, six different types of igniters were used. A commercially available 5 kJ pyrotechnic igniter was used as the standard. Also used were a nitrocellulose igniter, a pyrotechnic igniter with magnesium powder and KNO3/KClO3, and an exploding wire (Kanthal and tungsten wire). The examined igniters were found to affect the explosion parameters of dispersed nitrocellulose. The deviation of the explosion constant Kst reached 50% of the standard value. The highest pressure of 12.73 bar g was reached at a concentration of 750 g m−3 and an igniter exploding wire with Kanthal wire. The highest Kst value of 287.9 bar.m.s−1 was achieved at a concentration of 750 g m−3, when using the pyrotechnic igniter with KClO3 and magnesium powder.  相似文献   

3.
The wood gasification process poses serious concerns about the risk of explosion. The design of prevention and mitigation measures requires the knowledge of safety parameters, such as the maximum explosion pressure, the maximum rate of pressure rise and the gas deflagration index, KG, at standard ambient temperature (25 °C) and pressure (1 bar) conditions. However, the analysis at specific process conditions is strongly recommended, as the explosion behavior of gas mixtures may be completely different.In the work presented in this paper, the explosion behavior of mixtures with composition representative of wood chip-derived syngas (CO/H2/CH4/CO2/N2 mixtures with and without H2O) was experimentally studied in a closed combustion chamber. Experiments were run at two temperatures, 300 °C and 10 °C, and at atmospheric pressure. Test conditions were requested by the safety engineering designer of an existing industrial-scale wood gasification plant. In order to identify the specific fuel–air ratios to be analyzed, thus reducing the number of experimental tests, a preliminary thermo-kinetic study was performed.Results have shown that the mixtures investigated can be classified as low-reactivity mixtures, the higher value of KG found (∼36 bar m/s) being much lower than the KG value of methane (55 bar m/s @ 25 °C).  相似文献   

4.
Effects of ignitors and turbulence on dust explosions   总被引:1,自引:0,他引:1  
The aim of this work is in an attempt to increase the understanding of the acting behaviour of pyrotechnic ignitors and their effects on confined dust explosions. Flame visualization has shown that pyrotechnic ignitors can initiate an explosion by instantaneous jet-like volumetric and/or multipoint ignition. Hence, the rate of pressure rise and also the apparent burning velocity will be increased to some extent, depending on the ignitor energy and the reactivity of the mixtures. The ignitor effect is more important for the early stages of flame propagation and would be more significant in small explosion chambers. Thus, for dust explosion tests with various purposes, use of pyrotechnic ignitors should be made carefully, and the ignitor effect must be accounted for in the data interpretation. Turbulence induced by dust dispersion is a dominant factor in affecting dust explosions. At different ignition delays, however, the turbulence influence will be coupled with that of ignitors. This complicates further the interpretation of explosion data measured under turbulent conditions.  相似文献   

5.
Methane/coal dust/air explosions under strong ignition conditions have been studied in a 199 mm inner diameter and 30.8 m long horizontal tube. A fuel gas/air manifold assembly was used to introduce methane and air into the experimental tube, and an array of 44 equally spaced dust dispersion units was used to disperse coal dust particles into the tube. The methane/coal dust/air mixture was ignited by a 7 m long epoxypropane mist cloud explosion. A deflagration-to-detonation transition (DDT) was observed, and a self-sustained detonation wave characterized by the existence of a transverse wave was propagated in the methane/coal dust/air mixtures.The suppressing effects on methane/coal dust/air mixture explosions of three solid particle suppressing agents have been studied. Coal dust and the suppressing agent were injected into the experimental tube by the dust dispersion units. The length of the suppression was 14 m. The suppression agents examined in this study comprised ABC powder, SiO2 powder, and rock dust powder (CaCO3). Methane/coal dust/air explosions can be efficiently suppressed by the suppression agents characterized by the rapid decrease in overpressure and propagating velocity of the explosion waves.  相似文献   

6.
甲烷煤尘燃烧爆炸试验研究   总被引:2,自引:0,他引:2  
为揭示甲烷煤尘空气混合物爆炸波的传播规律,采用试验分析的方法,建立甲烷煤尘空气混合物燃烧爆炸的3种试验方案,分析不同体积分数的甲烷和不同质量浓度的煤尘消耗不同体积空气时的爆压和爆速等参数的发展趋势,探究爆轰波传播的稳定性,阐明了甲烷煤尘燃烧爆炸的基本特征。试验结果表明,在最优配比条件下,与单一甲烷空气、煤尘空气混合物相比,甲烷煤尘空气混合物的爆压、爆速明显增加。甲烷煤尘空气混合物爆轰比单一的气相、固相混合物爆轰的爆炸压力、爆速明显增加、爆轰更稳定。  相似文献   

7.
This paper presents the explosion parameters of corn dust/air mixtures in confined chamber. The measurements were conducted in a setup which comprises a 5 L explosion chamber, a dust dispersion sub-system, and a transient pressure measurement sub-system. The influences of the ignition delay on the pressure and the rate of pressure rise for the dust/air explosion have been discussed based on the experimental data. It is found that at the lower concentrations, the explosion pressure and the rate of pressure rise of corn dust/air mixtures decrease as the ignition delay increases from 60 ms; But at the higher concentrations, the explosion pressure and the rate of pressure rise increase slightly as the ignition delay increases from 60 ms to 80 ms, and decrease beyond 80 ms. The maximum explosion pressure of corn dust/air mixtures reaches its highest value equal to 0.79 MPa at the concentration of 1000 gm−3.  相似文献   

8.
The explosion characteristics of anthracite coal dust with/without small amount of CH4 (1.14 vol %) were investigated by using a 20 L spherical explosion apparatus with an emphasis on the roles of oxygen mole fraction and inert gas. Two methods based on overpressure and combustion duration time were used to determine the minimum explosion concentration (MEC) or the lower explosion limit (LEL) of the pure anthracite coal dust and the hybrid coal-methane mixtures, respectively. The experiment results showed that increasing oxygen mole fraction increases the explosion risk of coal dust: with increasing oxygen mole fraction, the explosion pressure (Pex) and the rate of explosion pressure rise ((dp/dt)ex)) increase, while MEC decreases. The explosion risk of anthracite dust was found to be lower after replacing N2 with CO2, suggesting that CO2 has a better inhibition effect on explosion mainly due to its higher specific heat. However, the addition of 1.14% CH4 moderates the inhibition effect of CO2 and the promotion effect of O2 on anthracite dust explosion for some extent, increasing explosion severity and reducing the MEC of anthracite dust. For hybrid anthracite/CH4 mixture explosions, Barknecht's curve was found to be more accurate and conservative than Chatelier's line, but neither are sufficient from the safety considerations. The experimental results provide a certain help for the explosion prevention and suppression in carbonaceous dust industries.  相似文献   

9.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   

10.
In order to study the influences of coal dust components on the explosibility of hybrid mixture of methane and coal dust, four kinds of coal dust with different components were selected in this study. Using the standard 20 L sphere, the maximum explosion pressure, explosion index and lower explosion limits of methane/coal dust mixtures were measured. The results show that the addition of methane to different kinds of coal dust can all clearly increase their maximum explosion pressure and explosion index and decrease their minimum explosion concentration. However, the increase in the maximum explosion pressure and explosion index is more significant for coal dust with lower volatile content, while the decrease in the minimum explosion concentration is more significant for coal dust with higher volatile content. It is concluded that the influence of methane on the explosion severity is more pronounced for coal dust with lower volatile content, but on ignition sensitivity it is more pronounced for coal dust with higher volatile content. Bartknecht model for predicting the lower explosion limits of methane/coal dust mixture has better applicability than Le Chatelier model and Jiang model. Especially, it is more suitable for hybrid mixtures of methane and high volatile coal dust.  相似文献   

11.
A correlation of the lower flammability limit for hybrid mixtures was recently proposed by us. The experimental conditions including ignition energy and turbulence which play a primary role in a gas or dust explosion were at fixed values. The sensitivity of such experimental conditions to the accuracy of the proposed formula was not thoroughly discussed in the previous work. Therefore, this work studied the effect of varying the ignition energy and turbulence intensity to the formula proposed in our previous paper. For ignition energy effect, results from methane/niacin mixture demonstrated that the MEC and LFL will not be affected by changing ignition energy. There is no distinguishable difference among gas explosion index (KG) and dust explosion index (KSt) derived from tests with every ignition energy (2.5 kJ, 5 kJ and 10 kJ) in a 36 L vessel. The proposed formula is independent of ignition energy. For turbulence effect, the proposed formula can have a good prediction of the explosion and non-explosion zone if the ignition delay time is within a certain range. The formula prediction is good as the ignition delay time increases up to 100 ms in this work. Propane/niacin and propane/cornstarch mixtures are also tested to validate the proposed formula. It has been confirmed that the proposed formula predicts the explosion and non-explosion zone boundary of such mixtures.  相似文献   

12.
Computational fluid dynamics is used to investigate the preconditioning aspect of overdriving in dust explosion testing. The results show that preconditioning alters both the particle temperature and distribution prior to flame propagation in the 20-L chamber. A parametric study gives the fluid pressure and temperature, and particle temperature and concentration at an assumed flame kernel development time (10 ms) for varying ignitor size and particle diameter. For the 10 kJ ignitor with 50% efficiency, polyethylene particles under 50 μm reach 400 K and may melt prior to flame propagation. Gases from the ignitor detonation displace the dust from the center of the chamber and may increase local particle concentration up to two times the nominal value being tested. These effects have important implications for explosive testing of dusts in the 20-L chamber and comparing to larger 1-m3 testing, where these effects may be negligible.  相似文献   

13.
We investigate the PAN dust explosion inhibition behaviors of NaHCO3 and Al(OH)3 in a 20 L spherical explosion system and a transparent pipe explosion propagation test system. The results show that, in the standard 20 L spherical explosion system, the highest PAN dust explosion concentration is 500 g/m3, the maximum explosion pressure is 0.661 MPa, and the maximum explosion pressure increase rate is 31.64 MPa/s; adding 50% NaHCO3 and 60% Al(OH)3 can totally inhibit PAN dust explosion. In the DN0.15 m transparent pipe explosion propagation test system, for 500 g/m3 PAN dust, the initial explosion flame velocity is 102 m/s, the initial pressure is 0.46 MPa, and the initial temperature is 967 °C; adding 60% NaHCO3 and 70% Al(OH)3 can totally inhibit PAN dust explosion flames. Through FTIR and TG analyses, we obtain the explosion products and pyrolysis patterns of the explosion products of PAN dust, NaHCO3, and Al(OH)3. On this basis, we also summarize the PAN dust explosion inhibition mechanisms of NaHCO3 and Al(OH)3.  相似文献   

14.
Coal dust explosion occurs easily in the coal chemical industry. To ensure safety in industrial production, NaY zeolite was used as carrier modified with Fe ions and combined with ammonium polyphosphate (APP) to prepare a novel composite suppressant for coal dust explosion. The explosion suppression performance of novel APP/NaY–Fe suppressant was investigated by flame propagation inhibition experiments. The results show that Fe ion modification can effectively improve the explosion suppression performance. By increasing content, the explosion suppression performance of the explosion suppressant increases. The maximum explosion pressure Pmax of coal dust drops to 0.13 MPa when 50 wt% explosion suppressants were added, and the coal dust explosion cannot continue to expand. Complete suppression of explosion could be achieved by adding 66 wt% explosion suppressants. Combined with XRD, SEM and TG results, the explosion suppression mechanism was proposed. The novel explosion suppressant has high thermal stability, good dispersity and its explosion suppression components distribute uniformly. It shows good explosion suppression performance by the synergistic effect among explosion-suppression components.  相似文献   

15.
Based on experience with powders of particle sizes down to the 1–0.1 μm range one might expect that dust clouds from combustible nm-particle powders would exhibit extreme ignition sensitivities (very low MIEs) and extreme explosion rates (very high KSt-values). However, there are two basic physical reasons why this may not be the case. Firstly, complete transformation of bulk powders consisting of nm-particles into dust clouds consisting of well-dispersed primary particles is extremely difficult to accomplish, due to very strong inter-particle cohesion forces. Secondly, should perfect dispersion nevertheless be achieved, the extremely fast coagulation process in clouds of explosive mass concentrations would transform the primary nm-particles into much larger agglomerates within fractions of a second. Furthermore, for organic dusts and coal the basic mechanism of flame propagation in dust clouds suggests that increased cloud explosion rates would not be expected as the particle size decreases into the <1 μm range. An overall conclusion is that dust clouds consisting of nm primary particles are not expected to exhibit more severe KSt-values than clouds of μm primary particles, in agreement with recent experimental evidence. In the case of the ignition sensitivity recently published evidence indicates that MIEs of clouds in air of some metal powders are significantly lower for nm particles than for μm particles. A possible reason for this is indicated in the paper.  相似文献   

16.
The risk assessment of combustible explosive dust is based on the determination of the probability of dust dispersion, the identification of potential ignition sources and the evaluation of explosion severity. It is achieved in most of cases with the two main experimental normalized devices such as the Hartmann tube (spark ignition) and the 20 L spherical bomb (with two 5 kJ pyrotechnic ignitors).Ignition energy of the 5 kJ ignitor is well calibrated and generates a reproducible ignition. But, on the other hand, this ignition is not punctual and the over pressure produced is nearly 2 bar. Moreover, the pyrotechnic igniter accelerates the combustion with multi ignition points in a large volume and that disturbs the flame propagation. In this way, this ignition source does not allow to analyze the combustion products because the composition of the pyrotechnic igniter was found in the combustion products.This paper deals with the comparison of two ignition sources in the 20 L spherical bomb. Different explosive dusts of great industrial interest are studied with electrical and pyrotechnic ignitors, in order to understand, first, the influence of each type of igniter on the explosion behaviour and then to evaluate the possibility of establishing a correspondence between parameters obtained with these two ignition sources.Severity parameters of nicotinic acid, aluminium powder and titanium alloy were measured by using the two types of ignition system in our 20 L spherical bomb equipped with the Kühner dihedral injector. The explosion overpressure P and the rate of pressure rise (dPdt) were measured in a large range of concentration allowing to propose correlations between electrical and pyrotechnic ignition for each parameter and each type of powder. These correlations aim to link the tests used with two different collections of experimental parameters for the same dust. The relevance of these correlations will be discussed.  相似文献   

17.
To forestall, control, and mitigate the detrimental effects of aluminium dust, a 20-L near-spherical dust explosion experimental system and an HY16429 type dust-cloud ignition temperature test device were employed to explore the explosion characteristics of micron-sized aluminium powder under different ignition energies, dust particle sizes, and dust cloud concentration (Cdust) values; the minimum ignition temperature (MIT) values of aluminium powder under different dust particle sizes and Cdust were also examined. Flame images at different times were photographed by a high-speed camera. Results revealed that under similar dust-cloud concentrations and with dust particle size increasing from 42.89 to 141.70 μm, the MIT of aluminium powder increased. Under various Cdust values, the MIT of aluminium dust clouds attained peak value when concentrations enhanced. Furthermore, the increase of ignition energy contributed to the increase of the explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex]. When dust particle size was augmented gradually, the Pex and (dP/dt)ex attenuated. Decreasing particle size lowered both the most violent explosion concentration and explosive limits.  相似文献   

18.
For the case where a dust or gas explosion can occur in a connected process vessel, it would be useful, for the purpose of designing protection measures and also for assessing the existing protection measures such as the correct placement, to have a tool to estimate the time for flame front propagation along the connecting pipe. Measurements of data from large-scale explosion tests in industrially relevant process vessels are reported. To determine the flame front propagation time, either a 1 m3 or a 4.25 m3 primary process vessel was connected via a pipe to a mechanically or pneumatically fed 9.4 m3 secondary silo. The explosion propagation started after ignition of a maize starch/air mixture in the primary vessel. No additional dust was present along the connecting pipe. Systematic investigations of the explosion data have shown a relationship between the flame front propagating time and the reduced explosion over-pressure of the primary explosion vessel for both vessel volumes. Furthermore, it was possible to validate this theory by using explosion data from previous investigations. Using the data, a flame front propagation time prediction model was developed which is applicable for:
  • •gas and dust explosions up to a K value of 100 and 200 bar m s−1, respectively, and a maximum reduced explosion over-pressure of up to 7 bar;
  • •explosion vessel volumes of 0.5, 1, 4.25 and 9.4 m3, independent of whether they are closed or vented;
  • •connecting pipes of pneumatic systems with diameters of 100–200 mm and an air velocity up to 30 m s−1;
  • •open ended pipes and pipes of interconnected vessels with a diameter equal to or greater than 100 mm;
  • •lengths of connecting pipe of at least 2.5–7 m.
  相似文献   

19.
Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum or Loss-of-Coolant Accidents (LOCA/LOVA) it is possible to form inside the ITER vacuum vessel an explosible atmosphere containing fine Be or W dusts and hydrogen. To approach the Be/H2 explosion problem, Be dust is substituted in this study by aluminium, because of high toxicity of Be dusts. The tested dust concentrations were 100, 200, 400, 800, and 1200 g/m3; hydrogen concentrations varied from 8 to 20 vol. % with 2% step. The mixtures were ignited by a weak electric spark. Pressure evolutions were recorded during the mixture explosions. In addition, the gaseous compositions of the combustion products were measured by a quadruple mass-spectrometer. The dust was involved in the explosion process at all hydrogen and dust concentrations even at the combination ‘8%/100 g/m3’. In all the other tests the explosion overpressures and the pressure rise rates were noticeably higher than those relevant to pure H2/air mixtures and pure Al dust/air mixtures. At lower hybrid fuel concentrations the mixture exploded in two steps: first hydrogen explosion followed by a clearly separated Al dust explosion. With rising concentrations, the two-phase explosion regime transits to a single-phase regime where the two fuel components exploded together as a single fuel. In this regime both the hybrid explosion pressures and pressure rise rates are higher than either H2 or Al ones. The two fuels compete for the oxygen; the higher the dust concentration, the more part of O2 it consumes (and the more H2 remains in the combustion products). The test results are used to support DUST3D CFD code developed at KIT to model LOCA or LOVA scenarios in ITER.  相似文献   

20.
The explosion characteristic parameters of polyethylene dust were systematically investigated. The variations in the maximum explosion pressure (Pmax), explosion index (Kst), minimum ignition energy (MIE), minimum ignition temperature (MIT), and minimum explosion concentration (MEC) of dust samples with different particle sizes were obtained. Using experimental data, a two-dimensional matrix analysis method was applied to classify the dust explosion severity based on Pmax and Kst. Then, a three-dimensional matrix was used to categorize the dust explosion sensitivity based on three factors: MIE, MIT, and MEC. Finally, a two-dimensional matrix model of dust explosion risk assessment was established considering the severity and sensitivity. The model was used to evaluate the explosion risk of polyethylene dust samples with different particle sizes. It was found that the risk level of dust explosion increased with decreasing particle size, which was consistent with the actual results. The risk assessment method can provide a scientific basis for dust explosion prevention in the production of polyethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号