首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
某焦化厂空气中PAHs的污染现状及健康风险评价   总被引:25,自引:10,他引:15  
王静  朱利中  沈学优 《环境科学》2003,24(1):135-138
采集并分析了焦化厂不同生产工段环境空气中12种PAHs的浓度.结果表明,在某焦化厂区,12种PAHs浓度之和为11.75~46.66 μg/m3,其中BaP为0.050~1.054 μg/m3;PAHs浓度大小依次为:出焦处>焦炉顶>大门口>熄焦处,焦炉顶和出焦处空气中BaP浓度远高于煤烟和交通干线.用毒性相当因子矫正后的焦化厂区PAHs浓度为0.3875~1.714 μg/m3矫正后的厂区工人口PAHs暴露率为3.100~13.71 μg/m3.  相似文献   

2.
蒸气入侵暴露情景下土壤气筛选值推导与比较   总被引:1,自引:1,他引:0       下载免费PDF全文
采用J&E模型推导了典型蒸气入侵暴露情形下土壤气中ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值,并与US EPA(美国国家环境保护局)及美国各州的颁布值进行比较. 结果表明,具有致癌效应的苯、氯仿相同暴露情形下的筛选值低于非致癌效应的甲苯、1,1-二氯乙烯3~4个数量级,表明VOCs污染场地应重点关注致癌性污染物. 其中,浅层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为9.6×102、2.7×102、1.1×107、4.0×105μg/m3,工商业暴露情形下分别为4.6×103、1.3×103、6.3×107、2.4×106μg/m3. 深层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为1.1×103、3.1×102、1.2×107、4.5×105μg/m3,工商业暴露情形下分别为5.2×103、1.5×103、7.1×107、2.7×106μg/m3. 筛选值大小的决定因素包括污染物的室内允许浓度、土壤气衰减系数及建筑物参数. 浅层与深层土壤气中各污染物筛选值无明显差异,但与US EPA及美国各州的颁布值差异较大,这主要是由污染物室内允许浓度及衰减系数确定方法的不同所致. 浅层土壤气平均衰减系数为2.3×10-4,与深层土壤气平均衰减系数(2.0×10-4)无明显差异,但均低于US EPA对应经验值〔0.1(浅层)、0.01(深层)〕2~3个数量级. 在不考虑吸附及生物降解时,污染源上方清洁土壤对污染物的衰减作用不明显.   相似文献   

3.
PRA在焦化厂污染土壤健康风险评价中的应用   总被引:5,自引:1,他引:4  
以北京市某炼焦化学厂场地污染调查为依据,采用PRA(概率风险评价)研究了15个人体暴露参数和土壤中污染物浓度不确定性对苯、苯并芘健康风险评价结果的影响. 结果表明:对于表层和深层土壤,苯、苯并芘各暴露途径及总暴露途径PRA95%分位值均小于相应DRA(确定性风险评价)风险值;该场地整个土层中苯的PRA总风险值为1.5×10-8~6.9×10-3,苯并芘为2.3×10-9~2.2×10-3,二者95%分位值分别为3.8×10-4和1.1×10-4;苯、苯并芘的DRA总风险值分别为PRA96.8%和99.1%分位值,并且二者的DRA总风险值/PRA95%分位值分别为1.5和3.2,表明DRA风险值偏保守. 参数敏感性分析表明,对苯总风险不确定性贡献较大的为深层土壤中的苯浓度(贡献率为94.63%,下同)和成人暴露周期(4.12%),苯并芘为表层土壤中苯并芘浓度(92.63%)、成人暴露周期(2.40%)、儿童每日土壤摄入量(2.12%)和儿童暴露周期(1.21%).   相似文献   

4.
珠江三角洲大气细颗粒物的致癌风险及源解析   总被引:11,自引:6,他引:5       下载免费PDF全文
胡珊  张远航  魏永杰 《中国环境科学》2009,29(11):1202-1208
于2004年4、7、10月和2005年1月对广州、深圳大气细颗粒物(PM2.5)中17种多环芳烃(PAHs)的浓度进行了分析,以苯并[a]芘(BaP)为毒性参照物的致癌毒性当量浓度(BaPeq),通过线性剂量-反应模型计算了呼吸致癌风险水平,结合源排放谱和化学质量平衡受体模型(CMB),研究了对致癌风险的各排放源贡献.结果表明,PAHs的浓度为5.87~63.36ng/m3,平均浓度深圳为32.68 ng/m3,广州为28.15ng/m3,且呈冬高夏低的分布规律.BaP和BaPeq日均超标率达到2.78%和5.56%,相对于WHO的日均标准的超标率达到50.0%和61.1%.该地区呼吸致癌风险平均水平为1×10-6~1×10-5,高于日常活动所致风险,低于引起关注的最低风险值.共解析出3种OC及致癌风险的排放源,分别为燃煤排放、机动车排放、生物质燃烧,其中燃煤排放和生物质燃烧贡献最大,对OC及BaPeq的贡献呈现相似规律.  相似文献   

5.
中国地下水砷健康风险评价   总被引:1,自引:0,他引:1  
以皮肤癌、膀胱癌、肺癌及联合毒性(膀胱癌和肺癌联合)为毒性终点,结合我国地下水砷浓度分布,评价了我国人群暴露于地下水砷的健康风险.研究表明我国各地地下水砷浓度几何均值为1.597~6.216μg/L,经面积校正后,全国地下水砷浓度几何均值为2.773μg/L.计算表明,我国男性人群日均暴露量几何均值为0.088μg/(kg bw·d),女性人群日均暴露量几何均值为0.093μg/(kg bw·d).基于此,全国男性由地下水中砷暴露带来的皮肤癌、肺癌、膀胱癌风险期望值分别为1.32×10~(-4),5.88×10~(-4)和9.83×10~(-4),男性膀胱癌和肺癌的联合风险期望值为1.48×10~(-3);全国女性由地下水中砷暴露引起的皮肤癌、肺癌和膀胱癌风险期望值分别为1.35×10~(-4),1.49×10~(-3)和9.42×10~(-4),女性膀胱癌和肺癌的联合风险期望值为2.31×10~(-3),女性风险均高于男性.大部分地区皮肤癌致癌风险在饮用水砷可接受风险水平10-4范围之内,而大部分肺癌、膀胱癌及其联合致癌风险值均超出了可接受风险水平.  相似文献   

6.
应用基于生理的药代动力学(PBPK)模型预测苯并(α)芘(BaP)暴露的人体内部剂量,基于贝叶斯的马尔科夫链蒙特卡洛模拟(MCMC)方法对模型参数进行校准和优化,最后运用已优化的模型对BaP内暴露基准值进行推导.研究发现,基于贝叶斯的MCMC方法对模型后验参数校准后,模型精度明显提高,两个数据集验证结果显示残差平方和分别降低了72%和94%.PBPK模型以BaP和子代谢物3-羟基苯并(α)芘(3-OHBaP)的体内动力学过程为结构基础,模拟BaP体内浓度分布大小为脂肪>肾脏>皮肤>缓慢灌注组织>快速灌注组织>静脉血>肝脏;3-OHBaP体内浓度分布大小为肾脏>快速灌注组织>脂肪>肺>静脉血>缓慢灌注组织>肝脏>皮肤.敏感性分析显示,快速灌注组织-血分配系数对模型输出影响最大,灵敏度系数超过了200%;排泄系数影响最小,只有肾小球过滤率KBR的灵敏度系数超过了1%.以美国国家环境保护局推荐的参考浓度2.0×10-6mg/m3为外暴露安全基准值,基于PBPK模型推导了职业暴露的BaP生物监测当量(BE),结果显示BE值为0.405pmol/mol肌酐(尿液3-OHBaP平均浓度),为基于人体内暴露剂量水平进行定量健康风险评估奠定了基础.  相似文献   

7.
郑州市碳素行业无组织VOCs排放特征分析及健康风险评价   总被引:4,自引:4,他引:0  
选择郑州市3家典型碳素企业,研究了不同功能区的挥发性有机污染物(volatile organic compounds,VOCs)的排放特征及其臭氧生成潜势(ozone formation potential,OFP),并利用美国环保署(EPA)的健康风险评价模型对碳素行业排放的VOCs的健康风险进行了初步评价.结果表明,3家企业生产区VOCs质量浓度在89. 77~964. 60μg·m~(-3)之间,管理区在51. 46~121. 59μg·m~(-3)之间,萘和二硫化碳是碳素企业厂区内浓度最高的污染物;生产区VOCs的臭氧生成潜势在75. 42~1 416. 73μg·m~(-3)之间,管理区在65. 32~202. 42μg·m~(-3)之间,主要来自于芳香烃和烯烃的贡献.生产区VOCs致癌健康风险(Risk)为3. 5×10~(-5)~2. 8×10~(-3),管理区为2. 0×10~(-5)~9. 4×10~(-5),高于EPA推荐的最大可接受水平(10~(-6));生产区VOCs非致癌健康风险危害指数(hazard index,HI)为3. 2~1. 4×10~2,管理区为4. 3×10~(-1)~3. 8,除企业甲的管理区外均大于1,可能会对暴露人群的健康造成致癌和非致癌危害.  相似文献   

8.
上海市大气中非甲烷烃行为研究   总被引:4,自引:3,他引:4  
经1993年7月~1994年4月对上海市区大气中非甲烷烃(NMHC)的测定,探讨了上海市大气中NMHC的浓度水平、浓度时间变化、浓度分布等状况。实验结果表明,上海市大气中NMHC的浓度日变化有比较明显的双峰形规律,即8:00~10:00和15:00~17:00各出现一次浓度高峰。上海市区大气中NMHC浓度,春季平均值为1.31×10~(-3)mg/m~3,夏季为2.00×10~(-3)mg/m~3,秋季为1.31×10~(-3)mg/m~3,冬季为1.29×10~(-3)mg/m~3,全年平均值为1.49×10~(-3)mg/m~3。根据对数正态分布检验的结果可以看出,上海市大气中NMHC并非来自单一类型的污染,而是多种类型的总体污染。  相似文献   

9.
基于泉州市区2014年1、4、7、10月的空气质量自动监测数据,分析了PM_(10)与PM_(2.5)污染水平并对其季节变化趋势进行探讨。结果表明,监测期间内,泉州市区PM10日均浓度变化范围为0.025~0.376mg/m3,PM2.5日均浓度变化范围为0.010~0.346mg/m3,PM_(10)与PM_(2.5)的年均日浓度分别为0.067mg/m3和0.034mg/m3。泉州市区大气中的PM_(10)与PM_(2.5)浓度均呈现出明显的季节变化趋势,春冬两季浓度高于夏秋两季。利用HYSPLIT-4模型对PM_(10)与PM_(2.5)浓度出现异常高值的时段进行气团后推轨迹推导,结果显示长距离传输和区域传输在不同时段对本地污染的主导作用不同。  相似文献   

10.
为了解我国炼油厂装置区BTEX(苯、甲苯、乙苯、间/对二甲苯、邻二甲苯)排放特征及其潜在的健康风险,于2015年11月采集了珠江三角洲某大型炼油厂装置区排放的苯系物,使用预浓缩-GC-MS方法对其进行检测,并采用美国EPA人体暴露风险评价模型对其潜在的健康风险进行评估.结果表明,常减压蒸馏装置(AVDU)、催化裂化装置(CCU)、MTBE装置、连续重整装置(CRU)、芳烃联合装置(ACU)、延迟焦化装置(DCU)排放的苯系物浓度分别高达(239.5±159.5)、(149.9±36)、(313.8±373.8)、(136.3±12.8)、(103.5±92)和(116.9±102.8)μg/m~3.健康风险评价结果显示,各装置区BTEX经吸入途径的非致癌风险数量级为1.0×10~(-3)~1.0×10~(-1).经皮肤暴露的非致癌风险数量级为1.0×10~(-9)~1.0×10~(-7),6大装置的BTEX非致癌风险指数均1,不会对人体造成明显伤害.各装置区BTEX经吸入途径的致癌风险数量级为1.0×10-6~1.0×10-5,经皮肤暴露的非致癌风险数量级为1.0×10~(-12)~1.0×10~(-11).6大装置区的苯、乙苯致癌风险指数均超过EPA人体可接受致癌风险值(1.0×10~(-6)).皮肤暴露途径引起的健康风险与吸入暴露有相同的趋势,但风险值远小于吸入暴露的风险值,占总风险值的比例不足0.001%,说明该炼油厂引起人体健康风险的主要途径为吸入暴露.  相似文献   

11.
为了明确炼焦过程生成飞灰中含碳组分的污染特征,采集了山西省3座典型焦化厂的飞灰样品,利用碳元素分析仪对有机碳(OC)和元素碳(EC)组分进行测试,研究了EC/OC比值及排放因子.结果表明:炼焦飞灰中OC、EC的浓度范围分别为4.03×10~2~4.34×10~2mg/g、3.25×10~2~3.74×10~2mg/g,均值分别为4.20×10~2,3.52×10~2mg/g,飞灰中OC浓度均高于EC;不同焦化厂排放飞灰中EC/OC比值接近,范围在0.80~0.88之间,均值为0.84,煤焦化过程中EC/TC比值明显大于工业燃煤,且炼焦飞灰中EC含量高于烟气;炼焦过程OC、EC的排放因子范围分别为2970~3205g/t和2395~2756g/t,均值分别为3100,2596g/t.根据排放因子估算2016年山西省机械炼焦生成飞灰中OC、EC排放量分别为253725.1,212467.7t.  相似文献   

12.
X18200600692用尿中1-羟基芘评价人体暴露PAHs的肺癌风险/段小丽(北京科技大学土木与环境工程学院)…∥中国环境科学/中国环境科学学会.-2005,25(3).-275~278环图X-58采集并分析了100名不吸烟成人24h呼吸的空气样品和尿液样品,建立了人尿中1-羟基芘(1-OH-Py)浓度与苯并(a)芘(BaP)、芘(Py)等14种多环芳烃(PAHs)呼吸暴露浓度的定量关系。参考现有关于BaP空气污染浓度与肺癌死亡率的剂量-反应关系模型,推导出用尿中1-OH-Py预测人体呼吸暴露PAHs的肺癌风险模型。用建立的模型对100名受试者进行了肺癌风险评价,结果表明,一般人群BaP暴…  相似文献   

13.
董捷  黄莹  李永霞  张厚勇  高甫威 《环境科学》2016,37(9):3540-3546
采集我国北方某大型钢铁企业22个表层土壤(0~20 cm)样品,采用气相色谱-质谱联用仪(GC-MS)分析了土壤中16种优控多环芳烃(PAHs)的含量.结果表明,土壤中Σ16PAHs含量范围为22.0~20 062.0μg·kg~(-1),且以中高环(4、5环)为主,单体以Flu、Pyr的含量最高.与同类相关研究比较,该钢铁厂表层土壤中PAHs污染处于中等水平,中、重度污染采样点主要位于焦化厂、球团厂等典型区域.20个采样点PAHs单体均超过荷兰土壤质量标准中10种PAHs的目标值,而与北京工业场地土壤筛选值相比,仅部分采样点BaA、BaP超标.源解析结果表明,表层土壤中PAHs主要来源于以煤为主的化石燃料的燃烧,石油类燃烧和泄漏的贡献较少.健康风险评价结果表明,BaP、BaA、DBA、BbF、InP在居住用地条件下的致癌风险超过了1×10~(-6),BaP、BaA、DBA在工业用地条件下的致癌风险超过了1×10-6,BaP的致癌风险最大,该钢铁厂表层土壤中PAHs已对人群健康产生危害,需实施土壤修复工程.  相似文献   

14.
某焦化厂周边大气PM10重金属来源及健康风险评价   总被引:10,自引:5,他引:5  
为了解焦化厂周边大气PM10中重金属的来源及健康风险,于2012年6月采集了某焦化厂周边的PM10.使用微波消解-ICP-MS方法进行重金属含量的检测,并采用美国EPA人体暴露风险评价模型对大气颗粒物重金属进行人群健康风险的初步评价.结果表明,焦化厂周边PM10中10种重金属元素的浓度变化范围较大,在3.06×10-5~1.77×10-2mg·m-3之间,其中Cr的浓度最高,Co的浓度最低,致癌物质的浓度高于非致癌物质的浓度.焦化厂是其周边大气PM10重金属的主要来源,Ni是其主要的污染重金属.健康风险评价结果显示,成人的致癌风险比儿童大,工业区和学校存在较大致癌风险.而儿童的非致癌风险是最大的,居住区的非致癌风险不容忽视.致癌物质中Cd、Cr和As存在较大的潜在致癌风险,Ni和Co存在一定的潜在风险,非致癌物质中Mn的非致癌风险很大,应引起相关部门的重视.  相似文献   

15.
河南省焦作市作为典型的以煤炭为主要能源的中级工业化城市,研究其城市转型过程中大气环境污染现状及污染物来源具有一定的指示意义。通过采集2013-2014年焦作市4个季度82个PM_(2.5)样品,对其中的16种优控的多环芳烃(PAHs)的含量与组成进行了测定与分析,并对多环芳烃进行了源解析。研究结果表明,焦作市大气中PM_(2.5)的浓度范围为51.32~270.12μg/m~3,平均为152.16μg/m~3;PM_(2.5)中总多环芳烃(TPAHs)的浓度范围是7.6~672.5 ng/m~3,平均为119.22 ng/m~3,其浓度随季节变化明显,冬季秋季春季夏季;PAHs中Ba P的平均浓度为11.93 ng/m~3,BaP当量浓度为30.43 ng/m~3,过量致癌风险值(ICR)达到264.74×10~(-5);多环芳烃组成以4~6环PAHs为主,占TPAHs总量的90%以上,浓度最高的是BghiP、BbF和IcdP。应用特征比值法和主成分分析法对PAHs进行了源解析,显示燃煤和机动车排放是2个最主要的排放源。  相似文献   

16.
陕南农村冬季PM_(2.5)主要化学组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对陕南农村冬季PM_(2.5)采样分析,获得PM_(2.5)质量浓度及主要化学组分特征。PM_(2.5)平均质量浓度为89.5±42.0μg·m~(-3),超过国家二级标准。观测期间PM_(2.5)中OC、EC浓度平均值分别为16.0±6.9μg·m~(-3)和5.7±3.2μg·m~(-3),OC/EC平均比值为3.0±0.4。主要水溶性离子组分为NO_3~-、SO_4~(2-)和NH_4~+。粒子数浓度与表面积浓度峰值主要集中在0.5μm以下粒径段。PAHs、BeP和BaP平均质量浓度分别为48.9±10.9 ng·m~(-3)、3.0±0.9 ng·m~(-3)和1.2±0.7 ng·m~(-3),PAHs污染较严重,强致癌物BaP浓度超过国家环境空气质量标准年平均浓度限值。当地农村以石煤为主的能源结构及采用的燃烧方式是导致污染的重要因素。  相似文献   

17.
天津市某社区老年人PM2.5暴露痕量元素健康风险评估   总被引:1,自引:0,他引:1  
为研究PM2.5暴露特征,对天津市某社区101名老年人(平均年龄67岁)夏季(2011年6月13日—7月2日)和冬季(2011年11月30日—12月12日)的PM2.5暴露水平进行了监测,并分析了PM2.5载带痕量元素的含量及其健康风险. 结果表明,研究对象夏、冬两季PM2.5个体暴露浓度分别为(124.2±75.2)、(170.8±126.6)μg/m3,室内暴露浓度分别为(120.0±48.9)、(164.9±125.7)μg/m3,环境暴露浓度分别为(98.6±33.3)、(140.0±87.7)μg/m3. 10种痕量元素中,ρ(Zn)最高,夏季为324.18~345.65ng/m3,占痕量元素总质量浓度的37%以上;冬季为148.36~362.00ng/m3,占痕量元素总质量浓度的35%以上. V、Cr、Mn、Cu、Zn和Pb的非致癌风险值均小于1,理论风险较小;但其中Cr和Mn风险值均超过0.1〔HQ(风险系数)分别为0.882和0.306〕,对于属于易感人群的老年人群体,仍有可能对其身体健康产生危害,需引起重视;As、Cd和总体致癌风险均超过10-6,对人体健康的危害不容忽视.   相似文献   

18.
用尿中1-羟基芘评价人体暴露PAHs的肺癌风险   总被引:3,自引:1,他引:3       下载免费PDF全文
 采集并分析了100名不吸烟成人24h呼吸的空气样品和尿液样品,建立了人尿中1-羟基芘(1-OH-Py)浓度与苯并(a)芘(BaP)、芘(Py)等14种多环芳烃(PAHs)呼吸暴露浓度的定量关系.参考现有关于BaP空气污染浓度与肺癌死亡率的剂量-反应关系模型,推导出用尿中1-OH-Py预测人体呼吸暴露PAHs的肺癌风险模型.用建立的模型对100名受试者进行了肺癌风险评价,结果表明,一般人群BaP暴露的肺癌风险约为11/10万,焦炉工人约为160/10万;若同时考虑14种PAHs的BaP当量毒性,则其相应肺癌风险要高出约0.5倍.一般人群的尿中1-OH-Py的生物暴露限值为0.11μmol/mol肌酐,焦炉工人为1.90μmol/mol肌酐.  相似文献   

19.
垃圾焚烧发电厂的运营会带来一系列诸如地下水污染、土壤污染和温室气体排放等生态环境问题。以某市生活垃圾焚烧发电厂厂区为研究对象,在事故工况条件下厂内垃圾仓、渗滤液处理站和生活污水处理站3个区域存在发生渗漏的风险性,通过Modflow和MT3D模拟分析事故工况下渗滤液中COD在地下水中的运移过程;并利用美国环保局(USEPA)推荐的健康风险评价模型对污水处理厂周围水体中重金属进行健康风险评价。结果表明:该厂区内渗滤液在事故工况下,缓慢向下扩散,COD的最大扩散范围逐渐扩大,浓度逐渐升高,到25年时最大扩散范围可达到27 924.62 m~2,迁移距离为192.53 m,浓度达到205.45 mg/L左右。在事故工况下,垃圾焚烧发电厂3个污染源随时间延长污染范围和距离会不断扩大,对地下水会产生一定污染。健康风险大小依次为Cr>As>Cu>Pb>Zn,通过饮水途径所致健康风险中,Cr对厂区所引起的致癌风险最大(4.1×10~(-7)a~(-1)),Cu的非致癌风险最大(1.4×10~(-10)a~(-1)),但均低于国际辐射防护委员会(ICRP)推荐的通过饮水途径导致的最大可接受风险水平(5.0×10~(-5)a~(-1))。  相似文献   

20.
在南京富贵山隧道开展机动车排放的挥发性有机物(VOCs)对环境及人群健康的影响研究,对VOCs浓度水平与变化特征、组成与化学反应活性进行了分析,并通过美国环境保护局(US EPA)的健康风险评价模型对VOCs的健康风险进行了评价.结果表明,隧道进口与出口空气中共检测出93种物质,隧道进口处样品的总VOCs浓度(87.28±7.08)μg/m3;隧道出口处总VOCs浓度(225.63±59.19)μg/m3.隧道出口检测到的烷烃和芳香烃这两类物质浓度比进口浓度高.隧道进口与出口处的VOCs总臭氧生成潜势为101.48μg O3/m3和402.01μg O3/m3.健康风险评价结果表明,隧道进口处14种主要VOCs的非致癌风险危害商值(HQ)在8.07×10-5~2.66×10-1之间,而在隧道出口处的HQ范围为3.18×10-4~2.92×10-1.隧道进口与出口处的VOCs的非致癌风险危险指数(HI)均小于1,非致癌风险值在安全范围之内.但1,3-丁二烯、氯仿、四氯化碳、苯和1,1,2-三氯乙烷的致癌风险较大,对人体健康具有明显的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号