首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   

2.
Annual study on the benzo(a)pyrene (BaP) concentration in aerosols in the coastal zone of the Gulf of Gdansk (southern Baltic) has been performed at Gdynia station. Combustion processes, especially domestic heating of both local and regional origin, were identified as the main sources of benzo(a)pyrene in this area. Concentrations observed during the heating season (mean 2.18 ng?m?3) were significantly higher than these recorded in the non-heating season (mean 0.05 ng?m?3). High benzo(a)pyrene concentrations were associated with low temperature and high humidity. Whereas high levels of precipitation usually decreased the BaP concentration in aerosols. The concentration of this factor in the studied area depended also on the wind direction and air masses trajectories. During heating season, continental air masses (coming from S, SE, SW) seemed to increase benzo(a)pyrene concentration, while maritime air masses (from N, NE, NW) caused its decrease. The differences in the BaP concentration resulting from potentially different emission levels of this compound during working and non-working days were not clearly pronounced.  相似文献   

3.
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng?m?3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10?6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98?×?10?7 in PM10 and 1.06?×?10?6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.  相似文献   

4.
The mass concentration of carbonaceous species, organic carbon (OC), and elemental carbon (EC) using a semicontinuous thermo-optical EC-OC analyzer, and black carbon (BC) using an Aethalometer were measured simultaneously at an urban mega city Delhi in Ganga basin from January 2011 to May 2012. The concentrations of OC, EC, and BC exhibit seasonal variability, and their concentrations were ~2 times higher during winter (OC 38.1?±?17.9 μg m?3, EC 15.8?±?7.3 μg m?3, and BC 10.1?±?5.3 μg m?3) compared to those in summer (OC 14.1?±?4.3 μg m?3, EC 7.5?±?1.5 μg m?3, and BC 4.9?±?1.5 μg m?3). A significant correlation between OC and EC (R?=?0.95, n?=?232) indicate their common emission sources with relatively lower OC/EC ratio (range 1.0–3.6, mean 2.2?±?0.5) suggests fossil fuel emission as a major source of carbonaceous aerosols over the station. On average, mass concentration of EC was found to be ~38 % higher than BC during the study period. The measured absorption coefficient (babs) was significantly correlated with EC, suggesting EC as a major absorbing species in ambient aerosols at Delhi. Furthermore, the estimated mass absorption efficiency (σabs) values are similar during winter (5.0?±?1.5 m2 g?1) and summer (4.8?±?2.8 m2 g?1). Significantly high aerosol loading of carbonaceous species emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective in these regions.  相似文献   

5.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in Huangshi, central China, from March 2012 to February 2013 and were analyzed for dicarboxylic acids (diacids) and related compounds (DARCs). Oxalic acid (C2; 416 ng m?3) was the most abundant species, followed by phthalic (Ph; 122 ng m?3), terephthalic (tPh; 116 ng m?3), succinic (C4; 70.4 ng m?3), azelaic (C9; 67.9 ng m?3), and adipic (C6; 57.8 ng m?3) acids. Relatively high abundances of Ph and tPh differed from the distribution in urban and marine aerosols, indicating contributions from nearby anthropogenic sources. Glyoxylic acid (ωC2; 41.4 ng m?3) was the dominant oxoacid, followed by 9-oxononanoic (ωC9; 40.8 ng m?3) and pyruvic (Pyr; 24.1 ng m?3) acids. Glyoxal (Gly; 35.5 ng m?3) was the dominant α-dicarbonyl. Highest average concentrations were found for C2, ωC2, and C9 in autumn, for C4, for Pyr and C6 in spring, for Ph, ωC9, and Gly in summer, whereas the lowest values were observed in winter. Seasonal variations and correlation coefficients of DARCs demonstrate that both primary emissions and secondary production are important sources. Principal component analysis of selected DARCs species suggests that a mixing of air masses from anthropogenic and biogenic sources contribute to the Huangshi aerosols.

Implications: Both primary emissions and secondary production are important sources of diacids and related compounds in PM2.5 from Huangshi, central China. Principal component analysis of selected diacids in Huangshi aerosols suggests that mixing of air masses from anthropogenic and biogenic sources contribute to ambient aerosols in central China.  相似文献   


6.
Sources of submicron aerosol during fog-dominated wintertime at Kanpur   总被引:1,自引:0,他引:1  
The main objective of this atmospheric study was to determine the major sources of PM1 (particles having aerodynamic diameter <1.0 μm) within and near the city of Kanpur, in the Indo-Gangetic Plain. Day and night, 10 h long each, filter-based aerosol samples were collected for 4 months (November 2009 to February 2010) throughout the winter season. These samples were subjected to gravimetric and quantitative chemical analyses for determining water-soluble ions (NH4 +, F?, Cl?, NO3 ?, and SO4 2?) using an ion chromatograph and trace elements using an inductively coupled plasma–optical emission spectrometer. The mean PM1 mass concentrations were recorded as 114?±?71 μg/m3 (day) and 143?±?86 μg/m3 (night), respectively. A significantly higher diurnal contribution of ions (NH4 +, F?, Cl?, NO3 ?, and SO4 2?) in PM1 mass was observed during the fog-affected days and nights throughout the winter season, for which the average values were recorded as 38.09?±?13.39 % (day) and 34.98?±?12.59 % (night), respectively, of the total PM1 mass. This chemical dataset was then used in a source-receptor model, UNMIX, and the model results are described in detail. UNMIX provided a maximum number of five source factors, including crustal material, composite vehicle, secondary aerosol, coal combustion, and iron/steel production and metallurgical industries, as the dominant air pollution sources for this study.  相似文献   

7.
Gaseous nitrogen dioxide (NO2) represents an oxidant that is present in relatively high concentrations in various indoor settings. Remarkably increased NO2 levels up to 1.5 ppm are associated with homes using gas stoves. The heterogeneous reactions of NO2 with adsorbed water on surfaces lead to the generation of nitrous acid (HONO). Here, we present a HONO source induced by heterogeneous reactions of NO2 with selected indoor paint surfaces in the presence of light (300 nm?<?λ?<?400 nm). We demonstrate that the formation of HONO is much more pronounced at elevated relative humidity. In the presence of light (5.5 W m?2), an increase of HONO production rate of up to 8.6?·?109 molecules cm?2 s?1 was observed at [NO2]?=?60 ppb and 50 % relative humidity (RH). At higher light intensity of 10.6 (W m?2), the HONO production rate increased to 2.1?·?1010 molecules cm?2 s?1. A high NO2 to HONO conversion yield of up to 84 % was observed. This result strongly suggests that a light-driven process of indoor HONO production is operational. This work highlights the potential of paint surfaces to generate HONO within indoor environments by light-induced NO2 heterogeneous reactions.  相似文献   

8.
Concentrations of neutral poly- and perfluoroalkyl substances (PFASs), such as fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sufonamidoethanols (FASEs), and fluorotelomer acrylates (FTACs), have been simultaneously determined in surface seawater and the atmosphere of the North Sea. Seawater and air samples were taken aboard the German research vessel Heincke on the cruise 303 from 15 to 24 May 2009. The concentrations of FTOHs, FASAs, FASEs, and FTACs in the dissolved phase were 2.6–74, <0.1–19, <0.1–63, and <1.0–9.0 pg L?1, respectively. The highest concentrations were determined in the estuary of the Weser and Elbe rivers and a decreasing concentration profile appeared with increasing distance from the coast toward the central part of the North Sea. Gaseous FTOHs, FASAs, FASEs, and FTACs were in the range of 36–126, 3.1–26, 3.7–19, and 0.8–5.6 pg m?3, which were consistent with the concentrations determined in 2007 in the North Sea, and approximately five times lower than those reported for an urban area of Northern Germany. These results suggested continuous continental emissions of neutral PFASs followed by transport toward the marine environment. Air–seawater gas exchanges of neutral PFASs were estimated using fugacity ratios and the two-film resistance model based upon paired air–seawater concentrations and estimated Henry's law constant values. Volatilization dominated for all neutral PFASs in the North Sea. The air–seawater gas exchange fluxes were in the range of 2.5?×?103–3.6?×?105 pg m?2 for FTOHs, 1.8?×?102–1.0?×?105 pg m?2 for FASAs, 1.1?×?102–3.0?×?105 pg m?2 for FASEs and 6.3?×?102–2.0?×?104 pg m?2 for FTACs, respectively. These results suggest that the air–seawater gas exchange is an important process that intervenes in the transport and fate for neutral PFASs in the marine environment.  相似文献   

9.
Polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxin and furan (PCDD/F) concentrations in the atmosphere were analysed using passive air samplers (PAS) close to the Rhine River between France and Germany. Collectors were placed in industrial, urban, rural and remote areas (Vosges Mountains) between March 2009 and August 2010, and the mean PCB concentrations (sum of 22 congeners) were 3.3, 3.9, 4.1 and 1.4 ng?PAS?1?day?1, respectively. Two events during the sampling period were observed in April 2009 and February–March 2010 with the highest PCB concentrations found in the industrial area (19.6 ng?PAS?1?day?1). PCDD/F level were measured during these periods, and the maximum concentration observed was from 37.5 fg?WHO?PAS?1?day?1  相似文献   

10.
A wet–dry deposition sampler was located at The Scientific and Technological Research Council of Turkey-National Metrology Institute (TUBITAK-UME) station, and a bulk deposition sampler was placed at the Kad?ll? village to determine the atmospheric deposition flux of polycyclic aromatic hydrocarbons (PAHs) and pesticides (organochlorine and organophosphorus) in soluble fraction of samples in Kocaeli, Turkey. The 28 samples for each wet, dry, and total deposition were collected weekly from March 2006 to March 2007. Gas chromatography-tandem mass spectrometry was used to analyze the samples which were prepared by using solid-phase extraction (SPE) method. The sum of volume weighted mean of deposition fluxes was obtained as 7.43 μg m?2 day?1 for wet deposition, 0.28 μg m?2 day?1 for dry deposition and 0.54 μg m?2 day?1 for bulk deposition samples for PAHs and 9.88 μg m?2 day?1 for wet deposition, 4.49 μg m?2 day?1 for dry deposition, and 3.29 μg m?2 day?1 for bulk deposition samples for pesticides. While benzo(a)anthracene had the highest fluxes among PAH compounds for all types of depositions, guthion and phosphamidon had the highest deposition flux compared with the other pesticides. Benzo(ghi)perylene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, benzo(a)pyrene, and acenaphthene were not detected in any of the samples. Beta-HCH, gamma-HCH, and endrin aldehyde were the only compounds among 18 organochlorine pesticides to be detected in all deposition samples. The main sources of pesticides were the high number of greenhouses around the sampling stations. However, all of the organophosphorus pesticides were detected in all deposition samples. The pollution sources were identified as coal and natural gas combustion, petrogenic sources, and traffic for TUBITAK-UME station whereas coal and natural gas combustion and traffic were the main sources for Kad?ll? station by considering the results of factor analysis, ratios, and wind sector analysis.  相似文献   

11.
Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m?3) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p?>?0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m?3 air Hg were significantly lower than those exposed to 2 ng m?3 air Hg in late morning (p?<?0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m?3 air Hg were significantly higher than those exposed to 2 ng m?3 air Hg (p?<?0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g?1) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p?>?0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.  相似文献   

12.
An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m?3 were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m?3 were registered in the gymnasium. The chalk dust contributed to CO3 2? concentrations of 32?±?9.4 μg m?3 in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m?3, were measured in the fronton. The chalk dust is also responsible for the high Mg2+ concentrations in the gym (4.7?±?0.89 μg m?3), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm?3 and 28 cm?3, respectively.  相似文献   

13.
PBDEs were measured in air and soil across Azerbaijan to establish contemporary concentrations at 13 urban and rural sites. Polyurethane foam passive air samplers (PUF-PAS) were deployed for a period of a month with surface soil samples collected at the same sites. Unlike organochlorine pesticides previously surveyed by our group, PBDE concentrations in both contemporary air and soil were low in comparison to recent European and Asian studies. For example, mean ∑9PBDE concentrations in air and soil were 7.13 ± 1.66 pg m?3 and 168 ± 57 pg g?1, respectively. The fully brominated BDE-209 was the most abundant congener observed in soil (174.8 ± 58.5 pg g?1), comprising ~ 96% of ∑10PBDE. However, the PAS-derived air concentrations for highly brominated congeners must be viewed with caution as there is uncertainty over the uptake rates of particle-bound chemicals using these devices. Some of the highest concentrations in air were observed at sites with the highest wind speeds and at several remote locations in the north of the country and this requires further research. Levels of BDE-47 and 99 (the two most abundant congeners in the widely used penta-formulation) were lower than levels reported elsewhere suggesting limited use/import of the penta-BDE formulation in Azerbaijan.  相似文献   

14.

Introduction

This study collected long-term airborne lead concentrations in the Korean peninsula and analyzed their temporal, spatial, and cancer risk characterization.

Methods

Approximately, 12,000 airborne samples of total suspended particulate (TSP) were collected from 30 ambient air monitoring stations in inland (Daegu, Daejeon, Gwangju, and Seoul) cities and portal cities (Incheon, Busan, and Ulsan) over a period of 7?years (2004?C2010). High volume air samplers were employed to collect daily TSP samples during the second week of the consecutive months throughout the entire study period. The concentrations of Pb extracted from the TSP samples were analyzed using either inductively coupled plasma-atomic emission or flame atomic absorption spectrometry.

Results

The long-term high mean Pb concentrations were observed in the port cities including Incheon (88?±?18?ng/m3), Ulsan (61?±?7?ng/m3), and Busan (58?±?6?ng/m3). In the temporal analysis, seasonal mean Pb levels were relatively higher in winter and spring than those in summer and fall. In the spatial analysis, the mean Pb levels in spring, winter, and fall from Incheon, which showed the highest seasonal concentrations except summer, were 110?±?19, 101?±?18, and 76?±?23?ng/m3, respectively. In summer, the highest seasonal mean Pb level was observed in the largest industrial city and the second port city, Ulsan (78?±?15?ng/m3), followed by Incheon (65?±?13?ng/m3).

Conclusion

The estimated excess cancer risk analysis showed that inhalation of Pb could result in cancer for one or two persons per million of population in the Korean peninsula.  相似文献   

15.
Agra, one of the oldest cities “World Heritage site”, and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM2.5: d?<?2.5 μm) as well as associated carbonaceous aerosols. PM2.5 was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM2.5 was 165.42?±?119.46 μg m?3 at AGR while at DEL it was 211.67?±?41.94 μg m?3 which is ~27 % higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m?3. The PM2.5 was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96?±?34.42 and 9.53?±?7.27 μm m?3, respectively. Total carbon (TC) was 79.01?±?38.98 μg m?3 at AGR, while it was 50.11?±?11.93 (OC), 10.67?±?3.56 μg m?3 (EC), and 60.78?±?14.56 μg m?3 (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM2.5 and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26.52 μg m?3 while at DEL it was 38.78 and 27.55 μg m?3, respectively. In the case of POC, similar concentrations were observed at both places but in the case of SOC higher over AGR by 24 in comparison to DEL, it is due to the high concentration of OC over AGR. Secondary organic aerosol (SOA) was 42 % higher at AGR than DEL which confirms the formation of secondary aerosol at AGR due to rural environment with higher concentrations of coarse mode particles. The SOA contribution in PM2.5 was also estimated and was ~32 and 12 % at AGR and DEL respectively. Being high loading of fine particles along with carbonaceous aerosol, it is suggested to take necessary and immediate action in mitigation of the emission of carbonaceous aerosol in the northern part of India.  相似文献   

16.
Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran’s subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4?±?26.3 and 52.3?±?16.5 μg m?3 in the platform and 81.8?±?22.2 and 35?±?17.6 μg m?3 in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6?±?23 and 41.3?±?20.4 μg m?3 in the platform and 73.9?±?17.3 and 30?±?15 μg m?3, in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43 % (PM10) and 47.7 % (PM2.5) in platform of Imam Khomeini station and 15.9 % (PM10) and 18.5 % (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6 % (PM10) and 39.8 % (PM2.5) in platform and was 11.7 % (PM10) and 14.3 % (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3 % in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8 % of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5 % in the outdoor air, respectively. Other major crustal elements were 5.8 % (PM10) and 5.3 % (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4 % in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7 % in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.  相似文献   

17.
A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m?3 (4 pCi L?1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m?3) from the highly permeable soils (geometric mean permeability of 5 × 10?11 m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h?1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.  相似文献   

18.
This paper presents the results of wet precipitation chemistry from September 2009 to August 2010 at a high-altitude forest site in the southeastern Tibetan Plateau (TP). The alkaline wet precipitation, with pH ranging from 6.25 to 9.27, was attributed to the neutralization of dust in the atmosphere. Wet deposition levels of major ions and trace elements were generally comparable with other alpine and remote sites around the world. However, the apparently greater contents/fluxes of trace elements (V, Co, Ni, Cu, Zn, and Cd), compared to those in central and southern TP and pristine sites of the world, reflected potential anthropogenic disturbances. The almost equal mole concentrations and perfect linear relationships of Na+ and Cl? suggested significant sea-salts sources, and was confirmed by calculating diverse sources. Crust mineral dust was responsible for a minor fraction of the chemical components (less than 15 %) except Al and Fe, while most species (without Na+, Cl?, Mg2+, Al, and Fe) arose mainly from anthropogenic activities. High values of as-K+ (anthropogenic sources potassium), as-SO4 2?, and as-NO3 ? observed in winter and spring demonstrated the great effects of biomass burning and fossil fuel combustion in these seasons, which coincided with haze layer outburst in South Asia. Atmospheric circulation exerted significant influences on the chemical components in wet deposition. Marine air masses mainly originating from the Bay of Bengal provided a large number of sea salts to the chemical composition, while trace elements during summer monsoon seasons were greatly affected by industrial emissions from South Asia. The flux of wet deposition was 1.12 kg?N?ha?1?year?1 for NH4 +–N and 0.29 kg?N?ha?1?year?1 for NO3 ?–N. The total atmospheric deposition of N was estimated to be 6.41 kg?N?ha?1?year?1, implying potential impacts on the alpine ecosystem in this region.  相似文献   

19.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   

20.
The aim of the current study was to measure polycyclic aromatic hydrocarbons (PAHs) in eight indoor (In both kitchen and living room) air sampling locations using a passive sampling method for collection. Passive outdoor air samples were also collected from 3 of the same sampling locations as the indoor air sampling sites. Sampling was conducted in three seasons. The summer season, when windows are generally open, was between 18th July and 01st September, 2014; the autumn and winter seasons, when windows are mostly closed, was between 18th October and 01st December, 2014, and 01st December, 2014, and 18th January, 2015, respectively.

Average PAH concentrations in summer were 22 ± 21 ng/m3 and 17 ± 12 ng/m3 in the living room and kitchen, respectively, whereas living room and kitchen average PAH concentrations were 23 ± 16 ng/m3 and 20 ± 9 ng/m3, respectively, in autumn and 23 ± 13 ng/m3 and 23 ± 24 ng/m3, respectively, in winter. Outdoor air PAH concentrations in summer, autumn and winter were 7 ± 0.4 ng/m3, 22 ± 13 ng/m3 and 209 ± 33 ng/m3, respectively. An increase in outdoor PAH concentrations was measured in winter compared to the concentrations in summer and autumn, which paralleled the lower outdoor air temperature. However, PAH concentrations in the indoor environment vary according to the household characteristics and personal habits.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号