首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We undertook a quantitative estimation of health risks to residents living in the Slovak Republic and exposed to contaminated groundwater (ingestion by adult population) and/or soils (ingestion by adult and child population). Potential risk areas were mapped to give a visual presentation at basic administrative units of the country (municipalities, districts, regions) for easy discussion with policy and decision-makers. The health risk estimates were calculated by US EPA methods, applying threshold values for chronic risk and non-threshold values for cancer risk. The potential health risk was evaluated for As, Ba, Cd, Cu, F, Hg, Mn, NO3 ?, Pb, Sb, Se and Zn for groundwater and As, B, Ba, Be, Cd, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn for soils. An increased health risk was identified mainly in historical mining areas highly contaminated by geogenic–anthropogenic sources (ore deposit occurrence, mining, metallurgy). Arsenic and antimony were the most significant elements in relation to health risks from groundwater and soil contamination in the Slovak Republic contributing a significant part of total chronic risk levels. Health risk estimation for soil contamination has highlighted the significance of exposure through soil ingestion in children. Increased cancer risks from groundwater and soil contamination by arsenic were noted in several municipalities and districts throughout the country in areas with significantly high arsenic levels in the environment. This approach to health risk estimations and visualization represents a fast, clear and convenient tool for delineation of risk areas at national and local levels.  相似文献   

2.
This study presents an assessment of the potential impact of geological contamination of the environment on the health of the population in Spišsko-Gemerské rudohorie Mts. (SGR Mts.). The concentration levels of potentially toxic elements (mainly As, Cd, Cu, Hg, Pb, Sb, and Zn) were determined in soils, groundwater, surface water, and stream sediments as well as in the food chain (locally grown vegetables). A medical study included some 30 health indicators for all 98 municipalities of the study area. The As and Sb contents in human fluids and tissues were analyzed in one municipality identified to be at the highest risk. Based on element content, environmental and health risks were calculated for respective municipalities. Out of 98 municipalities 14 were characterized with extremely high environmental risk and 10 were characterized with very high carcinogenic risk from arsenic (groundwater). Extensive statistical analysis of geochemical data (element contents in soils, groundwater, surface water, and stream sediments) and health indicators was performed. Significant correlations between element contents in the geological environment and health indicators, mainly cancer and cardiovascular diseases, were identified. Biological monitoring has confirmed the transfer of elements from the geological environment to human fluids and tissues as well as to the local food chain.  相似文献   

3.
The Shizhuyuan Polymetallic Mine in Chen-zhou City is an important multi-metal deposit in China. After a dam accident in 1985, there are still a number of mining plants, smelters and tailing ponds in this area. These had the potential to pollute the surrounding groundwater. In this study, groundwater samples were collected from 20 residents’ wells in this area during both dry and wet seasons. In particular, this study focused on the exposure and the health risk assessment of trace heavy metal in groundwater. Multiple statistical analysis and fuzzy comprehensive method were employed to reveal the distribution characteristics of heavy metal and to assess the groundwater quality. Results indicated that Cr, Fe, Ni, Cu, Zn, As, Cd, Ba, Hg and Pb were widespread with low exposure levels. There were 19 wells with low level exposure and one well with a moderate level exposure in the dry season. All of the wells were in low level exposure during the wet season. As and Mn exhibited potential non-carcinogenic concern, because their maximum hazard quotient (HQ) was higher than 1.0. This may cause adverse health effect on adults in dry season or on children in both seasons. Only As, showed that the maximum carcinogenic risk was more than 10−4, suggesting a high cancer risk for children in both dry and wet seasons. Therefore, analysis and reduction the concentrations of As and Mn in groundwater are needed in order to protect the health of residents and especially children in the area.  相似文献   

4.
Kinmen is located in the southwest of Mainland China. Groundwater supplies 50% of the domestic water use on the island. Residents of Kinmen drink groundwater over the long term because surface water resources are limited. Nitrate–N pollution is found and distributed primarily in the western part of groundwater aquifer whereas saline groundwater is distributed to the northeastern Kinmen. This work applied the DRASTIC model to construct the vulnerability map of Kinmen groundwater. MT3D was then used to evaluate the contamination potential of nitrate–N. The health risk associated with the ingestion of nitrate–N contaminated groundwater is also assessed. The results from DRASTIC model showed that the upland crop and grass land have high contamination potential, whereas the forest, reservoir and housing land have low contamination potential. The calibrated MT3D model inversely determined the high strength sources (0.09–2.74 kg/m2/year) of nitrate contaminant located in the west to the north west area and required 2–5 years travel time to reach the monitoring wells. Simulated results of MT3D also showed that both the continuous and instantaneous contaminant sources of nitrate–N release may cause serious to moderate nitrate contamination in the western Kinmen and jeopardize the domestic use of groundwater. The chronic health hazard quotient (HQ) associated with the potential non-carcinogenic risk of drinking nitrate–N contaminated groundwater showed that the assessed 95th percentile of HQ is 2.74, indicating that exposure to waterborne nitrate poses a potential non-cancer risk to the residents of the island. Corrective measures, including protecting groundwater recharge zones and reducing the number of agricultural and non-agricultural nitrogen sources that enters the aquifer, should be implemented especially in the western part of Kinmen to assure a sustainable use of groundwater resources.  相似文献   

5.
为研究六六六(HCHs)和滴滴涕(DDTs)在太原市不同功能区土壤中的暴露格局、来源以及对周围人群的健康风险,在太原市化工区、灌区、矿区、生态区周边荒地土壤中进行采样,分析测定了土壤中HCHs和DDTs含量,根据太原市人群实际情况的暴露参数和USEPA的部分参数,对土壤HCHs和DDTs的健康风险进行评价。结果表明:1)太原市表层土壤中HCHs的平均含量大小依次为化工区>灌区>矿区>生态区;DDTs平均含量的大小依次为化工区>灌区>矿区>生态区,仅6%的HCHs和3%的DDTs和的平均残留水平均高于我国土壤质量标准一级标准,但均不超过二级标准值;2)土壤中HCHs残留主要源于历史上林丹的使用,DDTs残留则来源于历史和新污染源的共同影响;3)太原市表层土壤HCHs和DDTs致癌风险大小为化工园区>矿区>灌区>生态区。非致癌风险大小为化工区>矿区>灌区>生态区。3种暴露途径的在不同功能区的健康风险贡献率大小均为经口摄入>呼吸吸入>皮肤接触;综合来看太原市表层土壤中的HCHs和DDTs并未对人类造成非致癌风险,但有一定的致癌风险。本文的研究结果可为太原市土壤质量评价和环境污染防治提供科学指导,并对太原市人群的健康风险防治提供依据。  相似文献   

6.
Residents of the Pingtung Plain, Taiwan, use groundwater for drinking. However, monitoring results showed that a considerable portion of groundwater has an As concentration higher than the safe drinking water regulation of 10 μg/L. Considering residents of the Pingtung Plain continue to use groundwater for drinking, this study attempted to evaluate the exposure and health risk from drinking groundwater. The health risk from drinking groundwater was evaluated based on the hazard quotient (HQ) and target risk (TR) established by the US Environmental Protection Agency. The results showed that the 95th percentile of HQ exceeded 1 and TR was above the safe value of threshold value of 10?6. To illustrate significant variability of the drinking water consumption rate and body weight of each individual, health risk assessments were also performed using a spectrum of daily water intake rate and body weight to reasonably and conservatively assess the exposure and health risk for the specific subgroups of population of the Pingtung Plain. The assessment results showed that 0.01–7.50 % of the population’s HQ levels are higher than 1 and as much as 77.7–93.3 % of the population being in high cancer risk category and having a TR value >10?6. The TR estimation results implied that groundwater use for drinking purpose places people at risk of As exposure. The government must make great efforts to provide safe drinking water for residents of the Pingtung Plain.  相似文献   

7.

Rapid industrialization and urbanization have contaminated air and soil by heavy metals and metalloids from biogenic, geogenic and anthropogenic sources in many areas of the world, either directly or indirectly. A case study was conducted in three different microenvironments, i.e., residential sites, official sites and official sites; for each sites, we choose two different locations to examine the elemental concentration in fine particulate matter and soil and health risk assessment. The concentration values of heavy metals and metalloid in the air and soil in the Agra region were measured using inductively coupled plasma-atomic emission spectrophotometry. The exposure factor and health risk assessment for carcinogenic and non-carcinogenic effects due to heavy metals and metalloid contaminants have been calculated for both children and adults by following the methodology prescribed by USEPA. For the elements As, Cr, Cd, Ni and Pb selected for the carcinogenic health risk assessment, the calculated results lie above the threshold ranges. We observed the lifetime exposure to heavy metals through mainly three pathways, ingestion, inhalation and dermal contact of soil and air from that particular area. Therefore, the overall hazard quotient (HQ) values for children are more than that of adults. The assessment of health risk signifies that there were mainly three exposure pathways for people: ingested, dermal contact and inhalation. The major exposure pathway of heavy metals to both children and adults is ingestion. The values of HQ are higher than the safe level (=1), indicating a high risk exists in present condition. Meanwhile, HQs value for children is higher than that for adults, indicating that children have higher potential health risk than adults in this region.

  相似文献   

8.
为探讨不同模型对污染场地健康风险评估结果的影响,以苯并[a]芘为例,采用RBCA、CLEA和CalTOX模型对某工业污染场地表层土壤进行健康风险评估,分析了评估结果的差异和原因,同时对模型的主要暴露参数进行了敏感性分析,并推导出基于风险概率分布的土壤修复限值。结果表明,RBCA、CLEA和CalTOX模型计算的苯并[a]芘致癌总风险分别为2.40×10-4、6.32×10-4和7.04×10-6,且经口摄入和皮肤接触2个途径对人体健康造成的危害最大。降解作用是影响CalTOX模型风险评估结果不同于RBCA和CLEA模型的重要因素,3个模型间参数取值及方法学的差异也会导致风险评估结果不同。各模型暴露参数的敏感性排序也有差异。采用基于风险概率分布的方法推导土壤修复限值,RBCA、CLEA和CalTOX模型所得结果分别为0.18、0.08、0.13(不考虑降解作用CalTOX模型)和10.74(考虑降解作用CalTOX模型)mg·kg-1,为各模型直接推导值的1.5~2.6倍。基于风险概率分布的方法可有效降低风险评估过程中参数不确定性的影响,为工业污染场地土壤修复值的制定提供参考。  相似文献   

9.
Geogenic arsenic (As) contamination of groundwater is a major ecological and human health problem in southwestern and northeastern coastal areas of Taiwan. Here, we present a probabilistic framework for assessing the human health risks from consuming raw and cooked fish that were cultured in groundwater As-contaminated ponds in Taiwan by linking a physiologically based pharmacokinetics model and a Weibull dose–response model. Results indicate that As levels in baked, fried, and grilled fish were higher than those of raw fish. Frying resulted in the greatest increase in As concentration, followed by grilling, with baking affecting the As concentration the least. Simulation results show that, following consumption of baked As-contaminated fish, the health risk to humans is <10?6 excess bladder cancer risk level for lifetime exposure; as the incidence ratios of liver and lung cancers are generally acceptable at risk ranging from 10?6 to 10?4, the consumption of baked As-contaminated fish is unlikely to pose a significant risk to human health. However, contaminated fish cooked by frying resulted in significant health risks, showing the highest cumulative incidence ratios of liver cancer. We also show that males have higher cumulative incidence ratio of liver cancer than females. We found that although cooking resulted in an increase for As levels in As-contaminated fish, the risk to human health of consuming baked fish is nevertheless acceptable. We suggest the adoption of baking as a cooking method and warn against frying As-contaminated fish. We conclude that the concentration of contaminants after cooking should be taken into consideration when assessing the risk to human health.  相似文献   

10.
The assessment of arsenic (As) bioavailability from contaminated matrices is a crucial parameter for reducing the uncertainty when estimating exposure for human health risk assessment. In vivo assessment of As utilising swine is considered an appropriate model for human health risk assessment applications as swine are remarkably similar to humans in terms of physiology and As metabolism. While limited in vivo As bioavailability data is available in the literature, few details have been provided regarding technical considerations for performing in vivo assays. This paper describes, with examples, surgical, experimental design and analytical issues associated with performing chronic and acute in vivo swine assays to determine As bioavailability in contaminated soil and food.  相似文献   

11.
Most local people in the agricultural areas of Hua-ruea sub-district, Ubon Ratchathani province (Thailand), generally consume shallow groundwater from farm wells. This study aimed to assess the health risk related to heavy metal contamination in that groundwater. Samples were randomly collected from 12 wells twice in each of the rainy and the dry seasons and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). The concentration of detected metals in each well and the overall mean were below the acceptable groundwater standard limits for As, Cd, Cr, Cu, Hg, Ni and Zn, but Pb levels were higher in four wells with an overall average Pb concentration of 16.66 ± 18.52 μg/l. Exposure questionnaires, completed by face-to-face interviews with 100 local people who drink groundwater from farm wells, were used to evaluate the hazard quotients (HQs) and hazard indices (HIs). The HQs for non-carcinogenic risk for As, Cu, Zn and Pb, with a range of 0.004–2.901, 0.053–54.818, 0.003–6.399 and 0.007–26.80, respectively, and the HI values (range from 0.10 to 88.21) exceeded acceptable limits in 58 % of the wells. The HI results were higher than one for groundwater wells located in intensively cultivated chili fields. The highest cancer risk found was 2.6 × 10?6 for As in well no. 11. This study suggested that people living in warmer climates are more susceptible to and at greater risk of groundwater contamination because of their increased daily drinking water intake. This may lead to an increased number of cases of non-carcinogenic and carcinogenic health defects among local people exposed to heavy metals by drinking the groundwater.  相似文献   

12.

This study investigated the content, distribution, and contamination levels of toxic metals (Cd, Cr, Cu, Pb, and Zn) in street dust in Lanzhou, an industrial city in Northwest China. Meanwhile, the risk these metals posed to the urban ecosystem and human health was also evaluated using the potential ecological risk index and human exposure model. Results showed that concentrations of these metals in the dust are higher than the background value of local soil, with Cu having the highest levels. The districts of Anning and Xigu had the most extreme levels of contamination, while Chengguan and Qilihe districts were lightly contaminated, which can be partly attributed to human activities and traffic densities. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Lanzhou were generally at moderate or low levels. Heavy metal concentration increased with decreasing dust particle size. The pollution indices of Cr, Cd, Cu, Pb, and Zn were in the range of 0.289–2.09, 0.332–2.15, 1.38–6.21, 0.358–2.59, and 0.560–1.83 with a mean of 1.37, 1.49, 3.18, 1.48, and 0.897, respectively. The geo-accumulation index (I geo) suggested that Zn in street dust was of geologic origin, while Cd, Cr, Pb, and Cu were significantly impacted by anthropogenic sources. The comprehensive pollution index showed that urban dust poses a high potential ecological risk in Lanzhou. Non-carcinogenic and carcinogenic effects due to exposure to urban street dust were assessed for both children and adults. For non-carcinogenic effects, ingestion appeared to be the main route of exposure to dust particles and thus posed a higher health risk to both children and adults for all metals, followed by dermal contact. Hazard index values for all studied metals were lower than the safe level of 1, and Cr exhibited the highest risk value (0.249) for children, suggesting that the overall risk from exposure to multiple metals in dust is low. The carcinogenic risk for Cd and Cr was all below the acceptable level (< 10−6).

  相似文献   

13.
Mining activities are among the major culprits of the wide occurrences of soil and water pollution by PAHs in coal district, which have resulted in ecological fragilities and health risk for local residents. Sixteen PAHs in multimedia environment from the Heshan coal district of Guangxi, South China, were measured, aiming to investigate the contamination level, distribution and possible sources and to estimate the potential health risks of PAHs. The average concentrations of 16 PAHs in the coal, coal gangue, soil, surface water and groundwater were 5114.56, 4551.10, 1280.12 ng g?1, 426.98 and 381.20 ng L?1, respectively. Additionally, higher soil and water PAH concentrations were detected in the vicinities of coal or coal gangue dump. Composition analysis, isomeric ratio, Pearson correlation analysis and principal component analysis were performed to diagnose the potential sources of PAHs in different environmental matrices, suggesting the dominant inputs of PAHs from coal/coal combustion and coal gangue in the soil and water. Soil and water guidelines and the incremental lifetime risk (ICLR) were used to assess the health risk, showing that soil and water were heavily contaminated by PAHs, and mean ICLRcoal/coal-gangue and mean ICLRsoil were both significantly higher than the acceptable levels (1 × 10?4), posing high potential carcinogenic risk to residents, especially coal workers. This study highlights the environmental pollution problems and public health concerns of coal mining, particularly the potential occupational health hazards of coal miners exposed in Heshan.  相似文献   

14.
Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600–58,700 mg/kg (av. 47,400 mg/kg) and 11,800–16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 μg/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most urgent remedial action. The concentration reduction factor (CRF) of As in both soil and groundwater follows the order: Songchun>Dongjung>Dongil>Myoungbong>Duckum mine.  相似文献   

15.
新疆焉耆盆地农田土壤重金属污染及健康风险评价   总被引:2,自引:0,他引:2  
为研究新疆焉耆盆地绿洲农田土壤重金属的污染及潜在健康风险,选取194个样点采集土壤样品,测定As、Cd、Cr、Cu、Ni、Pb和Zn共7种重金属元素含量。利用地质累积指数(I_(geo))评价农田土壤污染水平,采用US EPA健康风险评价模型,对农田土壤重金属污染的潜在健康风险进行评估。结果表明,研究区农田土壤7种重金属平均含量均未超出《食用农产品产地环境质量评价标准》中的限值,但Cd、Cr、Ni、Pb和Zn含量平均值分别超出新疆灌耕土背景值的1.67、1.41、1.30、3.01和6.78倍。农田土壤中Zn呈现轻度污染,Cd与Pb呈现轻微污染,As、Cr、Cu与Ni呈现无污染态势。健康风险评估结果表明,经手-口摄入是研究区农田土壤重金属日均暴露量及健康风险主要途径。农田土壤7种重金属通过3种暴露途径的非致癌风险商(HQ)与非致癌风险指数(HI),单项致癌风险指数(CR)与总致癌风险指数(TCR)均小于安全阈值,属于可接受风险水平。研究区农田土壤重金属对儿童的非致癌风险低于成人,致癌风险高于成人。研究区农田土壤中As与Pb是最主要的非致癌风险因子,As是最主要的致癌风险因子,研究区农田土壤中As对人体的健康风险应当引起重视。  相似文献   

16.
Chronic exposure to arsenic (As) causes significant human health effects, including various cancers and skin disorders. Naturally elevated concentrations of As have been detected in the groundwater of Bangladesh. Dietary intake and drinking water are the major routes of As exposure for humans. The objectives of this study were to measure As concentrations in rice grain collected from households in As-affected villages of Bangladesh where groundwater is used for agricultural irrigation and to estimate the daily intake of As consumed by the villagers from rice. The median and mean total As contents in 214 rice grain samples were 131 and 143 μg/kg, respectively, with a range of 2–557 μg/kg (dry weight, dw). Arsenic concentrations in control rice samples imported from Pakistan and India and on sale in Australian supermarkets were significantly lower (p < 0.001) than in rice from contaminated areas. Daily dietary intake of As from rice was 56.4 μg for adults (males and females) while the total daily intake of As from rice and from drinking water was 888.4 and 706.4 μg for adult males and adult females, respectively. From our study, it appears that the villagers are consuming a significant amount of As from rice and drinking water. The results suggest that the communities in the villages studied are potentially at risk of suffering from arsenic-related diseases.  相似文献   

17.
In order to assess the potential impact of the geological environment on the health of the population of the Slovak Republic, the geological environment was divided into eight major units: Paleozoic, Crystalline, Carbonatic Mesozoic and basal Paleogene, Carbonatic-silicate Mesozoic and Paleogene, Paleogene Flysch, Neovolcanics, Neogene and Quaternary sediments. Based on these geological units, the databases of environmental indicators (chemical elements/parameters in groundwater and soils) and health indicators (concerning health status and demographic development of the population) were compiled. The geological environment of the Neogene volcanics (andesites and basalts) has been clearly documented as having the least favourable impact on the health of Slovak population, while Paleogene Flysch geological environment (sandstones, shales, claystones) has the most favourable impact. The most significant differences between these two geological environments were observed, especially for the following health indicators: SMRI6364 (cerebral infarction and strokes) more than 70 %, SMRK (digestive system) 55 %, REI (circulatory system) and REE (endocrine and metabolic system) almost 40 % and REC (malignant neoplasms) more than 30 %. These results can likely be associated with deficit contents of Ca and Mg in groundwater from the Neogene volcanics that are only about half the level of Ca and Mg in groundwater of the Paleogene sediments.  相似文献   

18.
Fluoride contamination in the groundwater has got great attention in last few decades due to their toxicity, persistent capacity and accumulation in human bodies. There are several sources of fluoride in the environment and different pathways to enter in the drinking water resources, which is responsible for potential effect on human health. Presence of high concentration of fluoride ion in groundwater is a major issue and it makes the water unsuitable for drinking purpose. Availability of fluoride in groundwater indicates various geochemical processes and subsurface contamination of a particular area. Fluoride-bearing aquifers, geological factors, rate of weathering, ion-exchange reaction, residence time and leaching of subsurface contaminants are major responsible factors for availability of fluoride in groundwater. In India, several studies have reported that the groundwater of several states are contaminated with high fluoride. The undesirable level of fluoride in groundwater is one of the most natural groundwater quality problem, which affects large portion of arid and semiarid regions of India. Rajasthan, Andhra Pradesh, Telangana, Tamil Nadu, Gujarat, and West Bengal are the relatively high-fluoride-contaminated states in India. Chronic ingestion of high doses of fluoride-rich water leads to fluorosis on human and animal. Over 66 million Indian populations are at risk due to excess fluoride-contaminated water. Therefore, groundwater contamination subject to undesirable level of fluoride needs urgent attention to understand the role of geochemistry, hydrogeology and climatic factors along with anthropogenic inputs in fluoride pollution.  相似文献   

19.
This study investigated the source and contamination levels of toxic elements (Cd, Cr, As, Pb, Ni and Hg) present in a coastal environment, Paradip—an industrial hub of the east coast of India. The ecological risk assessment indices and human exposure models were used to evaluate the pollution status. Enrichment factor indicated that all the metal(loid)s found in the sediment are mostly derived from the anthropogenic source. According to the sediment quality quotient, 8.33% of sediments have crossed the ERM limit for Ni that can be fatal to biota. Meanwhile, 66.66, 41.66 and 8.33% of sediments have exceeded PEL range for Cr, Ni and As, respectively, that can register frequent lethal toxicity to benthic biota. As had the highest potential ecological harm coefficient (Erf?>?80), and Hg had moderate ecological harm coefficient (40?<?Erf?<?80). Summarily, the sediment quality of this site is moderate to heavily toxic to benthic organisms. The concentration of toxic metals in seawater was below the permissible limit (CCC and CMC) set by USEPA indicating that water is relatively safer for free floating aquatic biota. The health risk index of toxic metal (loid)s present in soils of the residential sites has confirmed that there is a severe non-carcinogenic threat for children (HI child?>?1) and a borderline carcinogenic risk for both adult and children. THQCr possesses highest non-carcinogenic threat, which contributed approximately 50% to HI followed by THQAs. The contribution of carcinogenic risk of chromium (CRCr) to TCR is approximately 60%. Cr is the significant contaminant of this site that has highest health effects. Highest exposure risks were associated with ingestion pathway accounting for about 85% of the total for most of the elements.  相似文献   

20.
拉萨河流域重金属污染及健康风险评价   总被引:5,自引:0,他引:5  
刘凤  李梅  张荣飞  崔益斌 《环境化学》2012,31(5):580-585
在分析拉萨河水体重金属污染现状以及水质理化参数的基础上,对重金属含量进行Pearson相关性分析,并运用水环境健康风险评价模型对其进行了健康风险的初步评价.结果表明Cd、Pb、Cu、Mn、Ni和Zn未超过我国生活饮用水卫生标准(GB 5749—2006)的限值,As和Fe严重超标.8种重金属含量与pH值间均不存在显著相关性,其中Zn、Ni与Pb污染存在一定的同源性,而Ni与Cd来源不同,As、Mn、Fe、Cu之间污染具有多源性.污染物通过皮肤接触途径所造成的危害要远小于饮水途径,致癌物风险比非致癌物高2—8个数量级.其中As对总风险贡献率为99.60%,成为主要的风险污染物.拉萨河水体中污染物引起的总健康风险高于EPA推荐的标准值,具有显著的风险,应引起环境监测和环境管理部门的关注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号