首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
This research investigated the feasibility of reducing volatilization of heavy metals (lead, zinc and cadmium) in municipal solid waste incineration (MSWI) fly ash by forming pyromorphite-like minerals via phosphate pre-treatment. To evaluate the evaporation characteristics of three heavy metals from phosphate-pretreated MSWI fly ash, volatilization tests have been performed by means of a dedicated apparatus in the 100-1000 °C range. The toxicity characteristic leaching procedure (TCLP) test and BCR sequential extraction procedure were applied to assess phosphate stabilization process. The results showed that the volatilization behavior in phosphate-pretreated MSWI fly ash could be reduced effectively. Pyromorphite-like minerals formed in phosphate-pretreated MSWI fly ash were mainly responsible for the volatilization reduction of heavy metals in MSWI fly ash at higher temperature, due to their chemical fixation and thermal stabilization for heavy metals. The stabilization effects were encouraging for the potential reuse of MSWI fly ash.  相似文献   

2.
The neutralization behavior of municipal solid waste incineration (MSWI) bottom ash is characterized according to reaction time and reaction system. Batch and flow-through pH titrations are used to determine the acid neutralizing capacity of the MSWI bottom ash in different reaction systems. A reaction path model and a reactive transport model evaluate the detailed mechanisms and titration kinetics of the experiments. The results indicate that both the neutralization kinetics and titration kinetics of the test methods are important. They determine the relation between the time scale of the experiments and that of an actual leaching environment. Current pH titration experiments account mainly for the relatively fast neutralization reactions, so that they cannot assess the long-term neutralization processes of MSWI bottom ash. It is also found that the neutralization characteristics of MSWI bottom ash in a flow-through system are very different from those in a batch system. The movement of a pH front and the washing-out of soluble buffering components have large influences on the neutralization ability of MSWI bottom ash in a reaction system with flow-through of leachant.  相似文献   

3.
Recycling MSWI bottom and fly ash as raw materials for Portland cement   总被引:5,自引:0,他引:5  
Municipal solid waste incineration (MSWI) ash is rich in heavy metals and salts. The disposal of MSWI ash without proper treatment may cause serious environmental problems. Recently, the local cement industry in Taiwan has played an important role in the management of solid wastes because it can utilize various kinds of wastes as either fuels or raw materials. The objective of this study is to assess the possibility of MSWI ash reuse as a raw material for cement production. The ash was first washed with water and acid to remove the chlorides, which could cause serious corrosion in the cement kiln. Various amounts of pre-washed ash were added to replace the clay component of the raw materials for cement production. The allowable limits of chloride in the fly ash and bottom ash were found to be 1.75% and 3.50% respectively. The results indicate that cement production can be a feasible alternative for MSWI ash management. It is also evident that the addition of either fly ash or bottom ash did not have any effect on the compressive strength of the clinker. Cement products conformed to the Chinese National Standard (CNS) of Type II Portland cement with one exception, the setting time of the clinker was much longer.  相似文献   

4.
The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is of concern in many countries and may inhibit the beneficial reuse of this secondary material. Previous studies have focused on the role of dissolved organic carbon (DOC) on the leaching of copper. Recently, a study of the Energy Research Centre of The Netherlands (ECN) showed fulvic acid-type components to exist in the MSWI bottom ash leachates and to be likely responsible for the generally observed enhanced copper leaching. These findings were verified for a MSWI bottom ash (slashed circle 0.1-2 mm) fraction from an incinerator in Flanders. The filtered leachates were subjected to the IHSS fractionation procedure to identify and quantify the fractions of humic acid (HA), fulvic acid (FA) and hydrophilic organic carbon (Hi). The possible complexation of fulvic acid with other heavy metals (e.g., lead) was also investigated. The identified role of fulvic acids in the leaching of copper and other heavy metals can be used in the development of techniques to improve the environmental quality of MSWI bottom ash. Thermal treatment and extraction with a 0.2 M ammonium-citrate solution were optimized to reduce the leaching of copper and other heavy metals. The effect of these techniques on the different fractions of organic matter (HA, FA, Hi) was studied. However, due to the obvious drawbacks of the two techniques, research is focused on finding other (new) techniques to treat MSWI bottom ash. In view of this, particle size-based separation was performed to evaluate its effect on heavy metal leaching and on HA, FA and Hi in MSWI bottom ash leachates.  相似文献   

5.
The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.  相似文献   

6.
Application of MSWI fly ash on acid soil and its effect on the environment   总被引:1,自引:0,他引:1  
This study evaluated the feasibility of using municipal solid waste incinerator (MSWI) fly ash as acid soil amendment. In particular, changes in soil physicochemical properties and the potential environmental problems caused by the application of MSWI fly ash were investigated. The results showed that application of MSWI fly ash to the acid soil could raise the soil pH. The contents of rapidly available P and K, and slowly available K in the amended soil had a linear relationship with the addition ratio of MSWI fly ash. An addition of less than 20% of MSWI could raise the soil respiratory intensity after incubation for 3-5 days. Application of MSWI fly ash to the soil increased its content of water soluble salts and heavy metals, which could cause phytotoxicity in the plants. Therefore, the addition of MSWI fly ash to the soil should not be excessive, and less than 5-10% is an advisable addition level depending on the acidity of the soil and the plants growing on it.  相似文献   

7.
By 2004, there were 19 municipal solid waste incinerators (MSWI) with a total yearly treatment capacity of 7.72 million tons in service in Taiwan. All 19 incinerators operated daily to generate about 1.05 million tons of incinerator ash, including bottom ash and stabilized fly ash in 2003, and the average ash yield is 18.67%. The total number of incinerators is expected to increase to 27, serving almost all cities in Taiwan by 2007. The authors have suggested a set of criteria based on the yield of incinerator ash (Phi) to study the ash recycle and reuse potential. The Taiwan Environmental Protection Administration has studied the treatment and reuse of MSWI ashes for many years and collected references on international experience accumulated by developed nations for establishing policies on treatment and reuse of MSWI ashes. These citations were analyzed as the basis for current governmental decision making on policies and factors to be considered for establishing policies on recycle and reuse of MSWI ashes. Feasible applications include utilization of ashes, which after sieving and separation of metal particles, produce granular materials. When granular materials comply with TCLP limitations, they can be utilized as cement additives or road base. The procedures of evaluation have been proposed in the performance criteria to be included in the proposed decision-making process of ash utilization.  相似文献   

8.
This work reviews strategies for the management of municipal solid waste incineration (MSWI) residues, particularly solid particles collected from flue gases. These tiny particles may be retained by different equipment, with or without additives (lime, activated carbon, etc.), and depending on the different possible combinations, their properties may vary. In industrial plants, the most commonly used equipment for heat recovery and the cleaning of gas emissions are: heat recovery devices (boiler, superheater and economiser); dry, semidry or wet scrubbers; electrostatic precipitators; bag filters; fabric filters, and cyclones. In accordance with the stringent regulations in force in developed countries, these residues are considered hazardous, and therefore must be treated before being disposed of in landfills. Nowadays, research is being conducted into specific applications for these residues in order to prevent landfill practices. There are basically two possible ways of handling these residues: landfill after adequate treatment or recycling as a secondary material. The different types of treatment may be grouped into three categories: separation processes, solidification/stabilization, and thermal methods. These residues generally have limited applications, mainly due to the fact that they tend to contain large quantities of soluble salts (NaCl, KCl, calcium compounds), significant amounts of toxic heavy metals (Pb, Zn, Cr, Cu, Ni, Cd) in forms that may easily leach out, and trace quantities of very toxic organic compounds (dioxin, furans). The most promising materials for recycling this residue are ceramics and glass-ceramic materials. The main purpose of the present paper is to review the published literature in this field. A range of studies have been summarized in a series of tables focusing upon management strategies used in various countries, waste composition, treatment processes and possible applications.  相似文献   

9.
The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.  相似文献   

10.
Municipal solid waste incineration (MSWI) bottom ash is an atypical granular material because it may include industrial by-products that result from the incineration of domestic waste. The prospects for the beneficial use of this particular material mainly lie in the field of road construction, as a substitute for the traditional natural aggregates. However, its mechanical properties are still little known, particularly in term of stiffness and deformability, characteristics that are essential to the construction of a durable roadway. The purpose of this paper is to describe better the mechanical behaviour of this recycled material. In order to reach this objective, a large experimental campaign is presented. The first part of this paper presents and comments in detail on the results obtained from static monotonic tests. Oedometric and triaxial shear tests were performed on MSWI bottom ash both before and after treatment with a specific hydraulic binder. These tests allow specification of the mechanical characteristics of the MSWI bottom ash, such as the initial Young's modulus, Poisson's ratio, the compressibility index, the friction angle, and the contracting or dilating behaviour of the material. The results reveal a mechanical behaviour similar to that of initially dense standard materials (sands, unbound granular materials) and a dependence on the applied average pressure, characteristic of the mechanical behaviour of granular media. More laboratory data on other samples of MSWI bottom ash are required to ensure that this comparison is statistically valid.  相似文献   

11.
Accelerated carbonation of municipal solid waste incineration fly ashes   总被引:3,自引:0,他引:3  
As a result of the EU Landfill Directive, the disposal of municipal solid waste incineration (MSWI) fly ash is restricted to only a few landfill sites in the UK. Alternative options for the management of fly ash, such as sintering, vitrification or stabilization/solidification, are either costly or not fully developed. In this paper an accelerated carbonation step is investigated for use with fly ash. The carbonation reaction involving fly ash was found to be optimum at a water/solid ratio of 0.3 under ambient temperature conditions. The study of ash mineralogy showed the disappearance of lime/portlandite/calcium chloride hydroxide and the formation of calcite as carbonation proceeded. The leaching properties of carbonated ash were examined. Release of soluble salts, such as SO4, Cl, was reduced after carbonation, but is still higher than the landfill acceptance limits for hazardous waste. It was also found that carbonation had a significant influence on lead leachability. The lead release from carbonated ash, with the exception of one of the fly ashes studied, was reduced by 2-3 orders of magnitude.  相似文献   

12.
Metal containing wastes like MSWI fly ashes and blast furnace sludge form a major environmental problem as they are polluted with heavy metals. The ash has to be landfilled or can be used as a construction material, but a pretreatment is in general necessary. Washing of the ashes with water in order to dissolve soluble salts or extracting the heavy metals with chemicals are possibilities. Blast furnace sludge contains large quantities of iron and carbon and could be recycled in the blast furnace, if the zinc content were not that high. Using a hydrometallurgical process the zinc can be removed from the sludge particles. In order to evaluate such treatment methods knowledge of the leaching behaviour of the studied material is very important. One of the factors influencing the leaching behaviour is the composition and mineralogy of the solids. A sequential extraction procedure, whereby the material is sequentially leached with different leaching solutions, can be used as an aid to characterize the material and to determine which chemical conditions are needed to obtain a sufficient extraction efficiency. To verify the accuracy of the sequential extraction procedure, a method is tested on MSWI fly ash and evaluated by comparing the results with those of leaching experiments whereby the final pH of the leaching solutions is varied over a wide range. Based upon this evaluation some suggestions for the use of the sequential extraction procedure are made and an adapted procedure is suggested, and applied to a blast furnace sludge.  相似文献   

13.
Municipal solid waste incineration (MSWI) fly ash is by-product and hazardous waste produced from MSWI plant. In the MSWI fly ash there are high contents heavy metals, among which cadmium (Cd) is more active and toxic. Although inorganic acid leaching is an effective way to remove heavy metals out from the MSWI fly ash and nitric acid has great efficiency for Cd removal, little literature reported the redistribution of remaining Cd in the MSWI fly ash. This investigation focused on the change of different factions (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter and residual) of Cd in treated (i.e. washed with nitric acid) MSWI fly ash. Sequence extraction procedures (SEP) have been used to derive different fractions of Cd, results indicated that fractions of Cd have changed significantly after nitric acid washing procedures. Due to the changes of main compounds and microstructures stable Cd (bound to organic matter and residual) had opportunity to leach out, which resulted in a higher potential risk (or higher bioavailability index) for living creatures, although the total amount of Cd decreased. X-ray diffraction (XRD) and images of scanning electron microscope (SEM) proved these changes in washed MSWI fly ash.  相似文献   

14.
Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.  相似文献   

15.
The potential of phosphorus (P) recycling from municipal solid waste incineration (MSWI) residue is investigated. Vast and ever increasing amounts of incineration residues are produced worldwide; these are an environmental burden, but also a resource, as they are a major sink for the material flows of society. Due to strict environmental regulations, in combination with decreasing landfilling space, the disposal of the MSWI residues is problematic. At the same time, resource scarcity is recognized as a global challenge for the modern world, and even more so for future generations.This paper reports on the methods and efficiency of P extraction from MSWI fly ash by acid and base leaching and precipitation procedures. Phosphorus extracted from the MSWI residues generated each year could meet 30% of the annual demand for mineral phosphorus fertiliser in Sweden, given a recovery rate of 70% achieved in this initial test.The phosphorus content of the obtained product is slightly higher than in sewage sludge, but due to the trace metal content it is not acceptable for application to agricultural land in Sweden, whereas application in the rest of the EU would be possible. However, it would be preferable to use the product as a raw material to replace rock phosphate in fertilizer production. Further development is currently underway in relation to procedure optimization, purification of the phosphorus product, and the simultaneous recovery of other resources.  相似文献   

16.
Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of "building material not allowed". The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.  相似文献   

17.
Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.  相似文献   

18.
Municipal solid waste incinerator (MSWI) bottom ash was allowed to be disposed of with municipal solid waste (MSW) in landfill sites in the recently enacted standard of China. In this study, three sets of simulated landfill reactors, namely, conventional MSW landfill (CL), conventional MSWI bottom ash and MSW co-disposed landfill (CCL), and leachate recirculated MSWI bottom ash and MSW co-disposed landfill (RCL), were operated to investigate the environmental impact of the co-disposal. The effect of leachate recirculation on the migration of Cu and Zn in the co-disposed landfill was also presented. The results showed that the co-disposal of MSWI bottom ash with MSW would not enhance the leaching of Cu and Zn from landfill. However, the co-disposal increased the Cu and Zn contents of the refuse in the bottom layer of the landfill from 56.7 to 65.3 mg/kg and from 210 to 236 mg/kg, respectively. The recirculation of the leachate could further increase the Cu and Zn contents of the refuse in the bottom layer of the landfill to 72.9 and 441 mg/kg, respectively. Besides these observations, the results also showed that the co-disposed landfill with leachate recirculation could facilitate the stabilization of the landfill.  相似文献   

19.
The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organic matter contributing to the release of DOC, HA and FA are, therefore, important for environmental risk assessment. In this study we have quantitatively measured the carbon speciation, and its relation with the leaching of Cu, in three fresh and carbonated MSWI bottom ash samples. Results show that up to only 25% of loss on ignition (LOI) consists of organic carbon (OC), while about 17% of OC in the three samples consists of HA and FA. Up to 50% of DOC in MSWI bottom ash leachates was identified as fulvic acid (FA). This value is substantially higher than previously estimated for these MSWI bottom ash samples and is consistent with the higher recovery of the new method that was applied. The results of this study imply that methods focusing on specific carbon fractions are more appropriate for assessment of environmentally relevant organic carbon species than the measurement of LOI.  相似文献   

20.
Municipal solid waste incinerator (MSWI) bottom ash may be used as a road construction material; it potentially contains however a sizable quantity of heavy metals, which under the effect of rainfall infiltration through the road structure can be leached out from the material and infiltrate into the underlying soil. An eco-compatibility assessment of MSWI bottom ash reuse in road construction applications necessitates examining the solubility and retention of heavy metals in road soils. This study is dedicated to Pb transfer, sorption and desorption (NEN 7341 standard test) within various soils. These experiments yield results relative to the interaction between road soils and an MSWI bottom ash leachate representative of a "fresh" product, with a high leaching potential. For the soils investigated, the sorption of lead varies between 90% and 99%. For an extraction at pH 7, Pb release is very low (<2%) for all soils, while at pH 4 leaching varies between 4% and 47%. This work shows that Pb may be fixed by some types of road soil in mostly stable forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号