首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
Global land use patterns and increasing pressures on water resources demand creative urban stormwater management. Strategies encouraging infiltration can enhance groundwater recharge and water quality. Urban subsoils are often relatively impermeable, and the construction of many stormwater detention best management practices (D-BMPs) exacerbates this condition. Root paths can act as conduits for water, but this function has not been demonstrated for stormwater BMPs where standing water and dense subsoils create a unique environment. We examined whether tree roots can penetrate compacted subsoils and increase infiltration rates in the context of a novel infiltration BMP (I-BMP). Black oak (Quercus velutina Lam.) and red maple (Acer rubrum L.) trees, and an unplanted control, were installed in cylindrical planting sleeves surrounded by clay loam soil at two compaction levels (bulk density = 1.3 or 1.6 g cm(-3)) in irrigated containers. Roots of both species penetrated the more compacted soil, increasing infiltration rates by an average of 153%. Similarly, green ash (Fraxinus pennsylvanica Marsh.) trees were grown in CUSoil (Amereq Corp., New York) separated from compacted clay loam subsoil (1.6 g cm(-3)) by a geotextile. A drain hole at mid depth in the CUSoil layer mimicked the overflow drain in a stormwater I-BMP thus allowing water to pool above the subsoil. Roots penetrated the geotextile and subsoil and increased average infiltration rate 27-fold compared to unplanted controls. Although high water tables may limit tree rooting depth, some species may be effective tools for increasing water infiltration and enhancing groundwater recharge in this and other I-BMPs (e.g., raingardens and bioswales).  相似文献   

2.
ABSTRACT Field investigations were conducted at three sites in the Washington, D.C., area to detect accumulation patterns of the trace metals, cadmium, copper, lead, and zinc in the soils of urban stormwater detention basins. The research results seemed to indicate that the use of detention basins to control urban stormwater runoff had few harmful effects to fine textured soils with respect to the study trace metals. Although the trace metals, especially lead and zinc, were found to accumulate in the surface soils of the basins, little significant downward movement of metals in the soil profiles had occurred. Accumulations of metals in the surface soils appeared to be a function of microtopography and the resultant residence time of standing water. The fractions of trace metals that were present in a leachable form in surface soils and stormwater solids were small, with median values ranging from 7.7 percent of the total concentration for Cd to 0.01 percent for Pb.  相似文献   

3.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

4.
Impact of recreational activities on soil and vegetation was evaluated in eight forested camping and picnic areas in southern Rhode Island. Forest vegetation consists of mixed-oak and white pine stands. Soils are of granitic glacial till or outwash origin and textures range from loamy sand to find sandy loam. Recreational use resulted in significant compaction of soils as indexed by soil penetration resistance and bulk density. Evidence indicates that compaction influences bulk densities to a depth of about 12.7 cm. Rates of water infiltration are less on recreation areas. Soil water accretion and depletion during the growing season are less rapid on recreation sites than on control sites. Differences are attributed to reduced infiltration, percolation, and rooting activity. Much of the ground surface on recreation areas is devoid of vegetation. The surface consists primarily of bare mineral soil, rock, or litter. The plants most commonly present are grasses. Native ground cover vegetation including tree seedlings, ericaceous shrubs and herbs has been eliminated or greatly reduced by trampling. Damage to tree trunks is common in recreation areas. White pine radial growth and scarlet oak height growth were significantly less on recreation sites. Scarlet oak appears intolerant to heavy recreation use.  相似文献   

5.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

6.
A field study (1993-96) assessed the benefits of applying unusually high rates of coal fly ash as a soil amendment to enhance water retention of soils without adversely affecting growth and marketability of the turf species, centipedegrass [Eremochloa ophiuroides (Munro) Hack.]. A Latin Square plot design was employed that included 0 (control, no ash applied), 280, 560, and 1120 Mg ha-1 application rates of unweathered precipitator fly ash. The fly ash was spread evenly over each plot area, rototilled, and allowed to weather under natural conditions for 8 mo before seeding. High levels of soluble salts, indicated by the electrical conductivity (EC) of soil extracts, in tandem with an apparent phytotoxic effect from boron (B), apparently inhibited initial plant establishment as shown by substantially lower germination counts in treated soil. However, plant height and rooting depth were not adversely affected, as were the dry matter (DM) yields throughout the study period. Ash treatment did not significantly influence water infiltration rate, bulk density, or temperature of the soil, but substantially improved water-holding capacity (WHC) and plant-available water (PAW). Enhanced water retention capacity improved the cohesion and handling property of harvested sod.  相似文献   

7.
Woltemade, Christopher J., 2010. Impact of Residential Soil Disturbance on Infiltration Rate and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 46(4): 700-711. DOI: 10.1111/j.1752-1688.2010.00442.x Abstract: Soil disturbances such as excavation and compaction in residential developments affect lawn infiltration rates and stormwater runoff. These effects were investigated via measuring saturated infiltration rates at 108 residential sites and 18 agricultural sites near Shippensburg, south-central Pennsylvania, using a double-ring infiltrometer. Residential sites included four neighborhoods distributed across three soil series classified as hydrologic soil group (HSG) B. Additional parcel data included date of house construction, percentage impervious area, lawn condition, and woody vegetation condition. Measured infiltration rates ranged from 0 to >40 cm/hour. Analysis of variance indicated significantly different mean infiltration rates (p < 0.001) for lots constructed pre-2000 (9.0 cm/hour) and those constructed post-2000 (2.8 cm/hour). Test results were used to determine a “field-tested” HSG for each site, representing disturbed soil conditions. Stormwater runoff was estimated from residential lots for a range of 24-hour design storms using the TR-55 model and several alternative methods of determining curve numbers, including five different representations of soil conditions. Curve numbers and stormwater runoff were substantially higher when based on field-tested HSGs for lots constructed post-2000 compared with lots built pre-2000 and when based on the HSG for undisturbed soils, documenting the magnitude of possible error in stormwater runoff models that neglect soil disturbance.  相似文献   

8.
Abstract: Runoff from urban catchments depends largely on the amount of impervious surface and the connectivity of these surfaces to the storm sewer drainage system. In residential areas, pervious lawns can be used to help manage stormwater runoff by intercepting and infiltrating runoff from impervious surfaces. The goal of this research was to develop and evaluate a simple method for estimating the reduction in stormwater runoff that results when runoff from an impervious surface (e.g., rooftop) is directed onto a pervious surface (e.g., lawn). Fifty‐two stormwater runoff reduction tests were conducted on six residential lawns in Madison, Wisconsin during the summer of 2004. An infiltration‐loss model that requires inputs of steady‐state infiltration rate, abstraction (defined here as surface storage, vegetation interception and cumulative total infiltration minus steady‐state infiltration during the period prior to steady‐state), and inundated area was evaluated using experimental data. The most accurate results were obtained using the observed steady‐state infiltration rates and inundated areas for each test, combined with a constant abstraction for all tests [root mean squared (RMS) difference = 1.0 cm]. A second case utilized lawn‐averaged steady‐state infiltration rates, a regression estimate of inundated area based on flow‐path length, and lawn‐specific abstractions based on infiltration rate (RMS difference = 2.2 cm). In practice, infiltration rates will likely be determined using double‐ring infiltration measurements (RMS difference = 3.1 cm) or soil texture (RMS difference = 5.7 cm). A generalized form of the model is presented and used to estimate annual stormwater runoff volume reductions for Madison. Results indicate the usefulness of urban lawns as a stormwater management practice and could be used to improve urban runoff models that incorporate indirectly connected impervious areas.  相似文献   

9.
Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.  相似文献   

10.
ABSTRACT: Control of stormwater runoff from impervious surfaces is an important national goal because of disruptions to downstream ecosystems, water users, and property owners caused by increased flows and degraded quality. One method for reducing stormwater is the use of vegetated (green) roofs, which efficiently detain and retain stormwater when compared to conventional (black) roofs. A paired green roof‐black roof test plot was constructed at the University of Georgia and monitored between November 2003 and November 2004 for the green roof's effectiveness in reducing stormwater flows. Stormwater mitigation performance was monitored for 31 precipitation events, which ranged in depth from 0.28 to 8.43 cm. Green roof precipitation retention decreased with precipitation depth; ranging from just under 90 percent for small storms (< 2.54 cm) to slightly less than 50 percent for larger storms (> 7.62 cm). Runoff from the green roof was delayed; average runoff lag times increased from 17.0 minutes for the black roof to 34.9 minutes for the green roof, an average increase of 17.9 minutes. Precipitation and runoff data were used to estimate the green roof curve number, CN = 86. This information can be used in hydrologic models for developing stormwater mitigation programs.  相似文献   

11.
In this paper, stormwater runoff from an urban watershed with combined sewer systems located in Daejeon metropolitan city, Korea, was characterized to measure the stormwater runoff discharge rates and pollutant concentrations. The observed averaged event mean concentrations (EMCs) of combined sewer overflows (CSO) were 536.1mg TSS/L, 467.7 mg TCODcr/L, 142.7 mg TBOD/L, 16.5mg TN/L, and 13.5mg TP/L. A detention basin was proposed to reduce CSO, and its essential design elements were discussed. The first flush significantly affected contaminant constituents in the descending order of suspended solid>organics>nutrients. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on the total suspended solid loading. In this study, detention of the first flush equivalent to 5mm of precipitation could reduce CSO-induced diffuse pollution loading to a receiving water body by up to 80% of the total suspended solid loading.  相似文献   

12.
By discharging excess stormwater at rates that more frequently exceed the critical flow for stream erosion, conventional detention basins often contribute to increased channel instability in urban and suburban systems that can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at approximately $600,000 per km2 in a representative suburban watershed, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost‐effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent storm events (~ < two‐year recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (such as the 100‐year recurrence). Results from a pilot installation show that the Detain H2O device reduced the cumulative sediment transport capacity of the preretrofit condition by greater than 40%, and contributed to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that potential gains in water quality and stream channel stability could be achieved at costs that are orders of magnitude less than comparable benefits from newly constructed stormwater control measures.  相似文献   

13.
Stormwater detention ponds have become ubiquitous in urbanized areas and have been suggested as potential hotspots of N transformation within urban watersheds. As a result, there is a great deal of interest in their use as structural best management practices to reduce the excessive N export from these watersheds. We conducted continuous monitoring of the influent and effluent N loads of a stormwater detention pond located on the Princeton University campus in Princeton, New Jersey. Our monitoring was conducted during four 21-d periods representing the four seasons of the northeastern United States. Water quality samples were collected and analyzed for nitrate (NO3-) during all four monitoring periods. During two of these periods, loads of ammonium (NH4+), dissolved organic N, and particulate N (PN) were measured. Our results show that NO3- dominated the influent N load, particularly in dry weather inflows to the detention pond. However, PN, which is often neglected in stormwater quality monitoring, made up as much as 30% of the total load and an even greater fraction during storm events. The results of our monitoring suggest that seasonal variation may play an important role in N retention within the detention pond. Although retention of NO3-, the most dominant fraction of N in the influent stormwater, was observed during the summer sampling period, no significant NO3- retention was observed during the spring or the two cold-weather sampling periods.  相似文献   

14.
Economic assessment of damage caused by invasive alien species provides useful information to consider when determining whether management programs should be established, modified, or discontinued. We estimate the baseline economic damage from an invasive alien pathogen, Ceratocystis fagacearum, a fungus that causes oak wilt, which is a significant disease of oaks (Quercus spp.) in the central United States. We focus on Anoka County, Minnesota, a 1,156 km2 mostly urban county in the Minneapolis-Saint Paul metropolitan region. We develop a landscape-level model of oak wilt spread that accounts for underground and overland pathogen transmission. We predict the economic damage of tree mortality from oak wilt spread in the absence of management during the period 2007–2016. Our metric of economic damage is removal cost, which is one component of the total economic loss from tree mortality. We estimate that Anoka County has 5.92 million oak trees and 885 active oak wilt pockets covering 5.47 km2 in 2007. The likelihood that landowners remove infected oaks varies by land use and ranges from 86% on developed land to 57% on forest land. Over the next decade, depending on the rates of oak wilt pocket establishment and expansion, 76–266 thousand trees will be infected with discounted removal cost of $18–60 million. Although our predictions of removal costs are substantial, they are lower bounds on the total economic loss from tree mortality because we do not estimate economic losses from reduced services and increased hazards. Our predictions suggest that there are significant economic benefits, in terms of damage reduction, from preventing new pocket establishment or slowing the radial growth of existing pockets.  相似文献   

15.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

16.
ABSTRACT: Field investigations were conducted at three sites in the Washington, D.C., area to detect the accumulation patterns of the trace metals, cadmium, copper, lead and zinc in the soils of roadside grassed swale drains that had been receiving urban stormwater runoff. Two sites were residential areas and one site was an intensively used highway. The research results seem to indicate that the use of swale drains to control urban stormwater runoff had few harmful effects to fine textured soils with respect to the study metals. With the exception of zinc, typical roadside patterns of decreasing metal concentrations with increasing distance from roads were observed for the upper 5 cm of study soils. Zinc accumulated in residential grassed swales due to leachate from galvanized curverts. Sampling to a depth of 60 cm revealed no evidence of subsurface trace metal enrichment in the study swales. Although the percentage of soil zinc in leachable form was as high as 20 percent of total zinc concentrations, the other study metals had small leachable components. Leachable lead was always less than 1 percent of the total lead.  相似文献   

17.
The microbiological quality of diffuse impermeable surface runoff is described in terms of bacterial densities and pathogens observed within urban catchments in North London and Milton Keynes and the use of somatic bacteriophages as faecal indicators are evaluated. The studies show the occurrence of faecal indicator organisms (FIOs) and pathogens to be ubiquitous in stormwater runoff from all types of urban land use surfaces, with the possible exception of major highways. Urban catchments in North London show a progressive downstream increase in FIOs and pathogens consonant with increasing urbanization and incidence of stormwater outfalls and combined sewer overflows (CSOs). Surface water FIOs and pathogens appear to be predominantly of non‐human origin being primarily derived from animal and bird sources, although the effect is over‐ridden in the presence of misconnections and CSO discharges. A combination of infrastructure improvement, end‐of‐pipe detention, source control and more robust local authority regulation is recommended for effective management and remediation of bacteriological urban water quality.  相似文献   

18.
A goal in urban water management is to reduce the volume of stormwater runoff in urban systems and the effect of combined sewer overflows into receiving waters. Effective management of stormwater runoff in urban systems requires an accounting of various components of the urban water balance. To that end, precipitation, evapotranspiration (ET), sewer flow, and groundwater in a 3.40‐hectare sewershed in Detroit, Michigan were monitored to capture the response of the sewershed to stormwater flow prior to implementation of stormwater control measures. Monitoring results indicate that stormflow in sewers was not initiated unless rain depth was 3.6 mm or greater. ET removed more than 40% of the precipitation in the sewershed, whereas pipe flow accounted for 19%–85% of the losses. Flows within the sewer that could not be associated with direct precipitation indicate an unexpected exchange of water between the leaky sewer and the groundwater system, pathways through abandoned or failing residential infrastructure, or a combination of both. Groundwater data indicate that groundwater flows into the leaky combined sewer rather than out. This research demonstrates that urban hydrologic fluxes can modulate the local water cycle in complex ways which affect the efficiency of the wastewater system, effectiveness of stormwater management, and, ultimately, public health.  相似文献   

19.
In many semi-arid environments of Mediterranean ecosystems, white poplar (Populus alba L.) is the dominant riparian tree and has been used to recover degraded areas, together with other native species, such as ash (Fraxinus angustifolia Vahl.) and hawthorn (Crataegus monogyna Jacq.). We addressed three main objectives: (1) to gain an improved understanding of some specific relationships between environmental parameters and leaf-level physiological factors in these riparian forest species, (2) to compare the leaf-level physiology of these riparian species to each other, and (3) to compare leaf-level responses within native riparian plots to adjacent restoration plots, in order to evaluate the competence of the plants used for the recovery of those degraded areas. We found significant differences in physiological performance between mature and young white poplars in the natural stand and among planted species. The net assimilation and transpiration rates, diameter, and height of white poplar plants were superior to those of ash and hawthorn. Ash and hawthorn showed higher water use efficiency than white poplar. White poplar also showed higher levels of stomatal conductance, behaving as a fast-growing, water-consuming species with a more active gas exchange and ecophysiological competence than the other species used for restoration purposes. In the restoration zones, the planted white poplars had higher rates of net assimilation and water use efficiency than the mature trees in the natural stand. We propose the use of white poplar for the rapid restoration of riparian vegetation in semi-arid Mediterranean environments. Ash and hawthorn can also play a role as accompanying species for the purpose of biodiversity.  相似文献   

20.
Changes in land use and extreme rainfall trends can lead to increased flood vulnerability in many parts of the world, especially for urbanized watersheds. This study investigates the performance of existing stormwater management strategies for the Upper Yahara watershed in Dane County, WI to determine whether they are adequate to protect urban and suburban development from an extreme rainfall. Using extreme storm transposition, we model the performance of the stormwater infiltration practices required for new development under current county ordinances. We find during extreme rainfall the volume of post‐development runoff from impervious surfaces from a typical site would increase by over 55% over pre‐development conditions. We recommend the ordinance be strengthened to reduce vulnerability to flooding from future urban expansion and the likely increase in the magnitude and frequency of extreme storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号