首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以木屑、二氧化硅为原料,采用慢速热解法制备了木屑生物炭(BC)和木屑-二氧化硅复合型生物炭(CBC),并对其物理化学性质进行表征,同时研究其吸附水中亚甲基蓝的吸附等温方程、动力学过程和影响因素。结果表明,和BC相比,CBC的比表面积、孔体积和平均孔径分别增加了2.85、7.00、1.21倍。CBC和BC对亚甲基蓝的吸附符合Langmuir吸附等温方程,其最大吸附量分别为26.60、5.37mg/g,CBC对亚甲基蓝的吸附能力更强。CBC和BC对亚甲基蓝的吸附动力学过程遵循准二级动力学方程。此外,和BC相比,CBC对亚甲基蓝的吸附效果受pH和离子强度影响较小。  相似文献   

2.
热解污泥制备生物炭是一种污泥资源化利用的主要处置方式,不同的反应条件对制得生物炭的品质存在显著的差异。以乙酸钾为添加剂,对城市脱水污泥(含水率80%)进行低温热解制备生物炭,考察了乙酸钾添加量、热解温度、热解停留时间及升温速率对生物炭性质的影响。通过N2吸附脱附、SEM、FT-IR等手段对原料污泥及生物炭进行了表征,实验结果表明,乙酸钾具有一定的扩孔作用,生物炭表面粗糙度明显增加,比表面积增大,吸附性能显著提高。当乙酸钾添加量4%,热解温度350℃,热解停留时间120 min,升温速率3℃·min~(-1)时生物炭的亚甲基蓝吸附量和比表面积分别为90.45 mg·g~(-1)、31.402 m2·g~(-1)。  相似文献   

3.
采用氯化钙改性凹凸棒,并对其进行了透射电镜、红外光谱分析。用改性后的凹凸棒泥浆处理亚甲基蓝废水,讨论了动力学和热力学吸附性质。结果表明:(1)利用氯化钙改性凹凸棒,泥浆粘度在21Pa.s条件下对亚甲基蓝废水的吸附动力学和热力学性质进行了研究。在研究范围内,改性凹凸棒泥浆对亚甲基蓝的吸附符合准二级反应动力学方程,并且Langmuir等温方程能更好地描述吸附过程。(2)改性凹凸棒泥浆对亚甲基蓝的平衡吸附量随亚甲基蓝初始浓度的增加而增大,随pH的增大而减小。(3)改性凹凸棒泥浆对亚甲基蓝主要以表面吸附为主。ΔG00、ΔH00表明吸附过程可以自发进行,并且为放热反应。ΔS00意味着随温度的增加,改性凹凸棒泥浆对亚甲基蓝的吸附趋于有序性。  相似文献   

4.
采用花生壳和木屑为原材料分别在300、600℃限氧条件下热裂解制备4种生物炭,研究了其对阳离子型染料亚甲基蓝(MB)、阴离子型染料刚果红(CR)和重金属Pb(Ⅱ)的吸附等温线和吸附动力学效应以及生物炭上Pb(Ⅱ)的解吸再生效应。结果表明,相比Freundlich方程,生物炭对MB和Pb(Ⅱ)的吸附等温线更符合Langmuir方程。其中,生物炭对MB的吸附受到表面含氧官能团和平均孔径影响,对Pb(Ⅱ)的吸附机制以离子交换或共沉淀为主。相比Langmuir方程,生物炭对CR的吸附等温线更符合Freundlich方程,吸附机制主要以疏水作用为主。300℃热裂解花生壳制备的生物炭对MB吸附效果最好,最大吸附量达28.0 mg/g;600℃热裂解制备的生物炭对CR吸附效果最好;300、600℃热裂解花生壳制备的生物炭对Pb(Ⅱ)吸附效果均较好,最大吸附量分别为63.7、73.2 mg/g。生物炭对MB、CR和Pb(Ⅱ)的吸附基本在24 h内达到平衡,相比准一级动力学模型,吸附过程均更符合准二级动力学模型。0.1 mol/L盐酸能有效解吸4种生物炭吸附的Pb(Ⅱ)。生物炭的吸附效果和吸附机制与生物炭制备时的热裂解温度和原材料种类关系密切。  相似文献   

5.
采用废弃虾壳制备吸附剂处理含刚果红或亚甲基蓝的溶液。考察了温度、吸附时间、初始浓度、吸附剂投加量和初始溶液pH对吸附效果的影响并构建了去除率预测模型,并对吸附等温线、吸附动力学和吸附热力学进行系统研究。结果表明:虾壳粉对刚果红和亚甲基蓝的吸附分别在24 h和4 h时达到平衡,平衡吸附量随吸附时间、初始浓度及吸附剂投加量的增加而增大;刚果红平衡吸附量随pH升高而增大,亚甲基蓝平衡吸附量几乎不随pH变化。在15℃下,吸附剂投加量为1 g·L~(-1),刚果红吸附的最优条件为接触时间24 h、pH=4,在该条件下,虾壳粉对刚果红的饱和吸附量为276.64 mg·g~(-1);亚甲基蓝吸附的最优条件为接触时间4 h、pH=12,在该条件下,虾壳粉对刚果红的饱和吸附量为1.44 mg·g~(-1);虾壳粉对2种染料的吸附过程以物理吸附为主,符合准二级动力学方程。虾壳粉对阴离子型染料的吸附效果较优,对阳离子型染料有一定吸附性能,是一种经济高效的染料废水吸附材料。  相似文献   

6.
松树锯末对亚甲基蓝(MB)的吸附研究   总被引:2,自引:1,他引:1  
采用松树锯末以及改性松树锯末对模拟废水中的亚甲基蓝进行吸附实验研究。研究结果表明,当亚甲基蓝的初始浓度为50 mg/L、pH为6、锯末投加量为1 g/L时,改性前后的锯末对亚甲基蓝的吸附量最大,分别为29.9 mg/g和60.6 mg/g。同时,对改性前后的锯末做了吸附等温线拟合及动力学研究。结果表明,吸附等温线均能很好地符合Langmuir吸附模式,吸附过程符合拟二级动力学方程。  相似文献   

7.
为提高对亚甲基蓝的去除效果,采用热解+Na OH浸泡方法制备了改性木屑,用SEM研究了改性对木屑表面结构的影响,并以该改性木屑为吸附剂,进行了从水溶液中吸附亚甲基蓝的性能研究。研究结果显示,改性木屑表面光滑,并出现多发熔孔。常温下,改性木屑对亚甲基蓝的吸附等温线符合Langmuir方程,最大吸附量322.58 mg/g,是原始木屑的10倍,是活性炭的3倍,改性效果显著;对浓度为200 mg/L、p H值为7的亚甲基蓝溶液,改性木屑投加量为0.8 g/L时,去除率达到了99.01%,去除效果理想。吸附动力学符合伪二级速率方程。  相似文献   

8.
以氯化铁(FeCl_3·6H_2O)、氯化锰(MnCl_2·4H_2O)、氯化锌(ZnCl_2)、氯化钴(CoCl_2·6H_2O)、氯化镍(NiCl_2·6H_2O)和氧化石墨烯(GO)为原料,制备了4种铁酸盐与还原氧化石墨烯(RGO)的复合材料(RGO-MFe_2O_4,M=Mn,Zn,Co或Ni),通过扫描电子显微镜、X-射线衍射仪、拉曼光谱仪进行了表征,系统研究了4种材料对亚甲基蓝的吸附。结果发现,RGO-NiFe_2O_4对亚甲基蓝的吸附能力最好,而对吸附起主要作用的是RGO。随着温度升高、染料初始浓度的增加和吸附时间的延长,RGO-NiFe_2O_4吸附量逐渐增大。RGO-NiFe_2O_4对亚甲基蓝的吸附动力学拟合符合伪二级动力学模型。吸附等温线模型拟合结果表明,Langmuir方程可以很好地描述其对亚甲基蓝的吸附。热力学参数ΔG~0在不同温度下均为负值,ΔH~0为正值,ΔS~0为正值说明吸附过程是自发的吸热反应。  相似文献   

9.
以甘蔗渣为原料,采用微波辅助磷酸活化法制备了同时富含中孔结构和含氧酸官能团的生物质炭,以氮气吸附、红外光谱FT-IR等技术对炭样品表面物化性质进行了表征,通过静态实验法测定了生物质炭对水中亚甲基蓝的吸附特性,分析了溶液pH、初始浓度、温度对吸附的影响,研究了不同pH下蔗渣生物质炭对亚甲基蓝的吸附行为,并从热力学及动力学角度探讨了生物质炭对亚甲基蓝的吸附机理。结果表明,不同制备参数下生物质炭的得率均大于39.2%,但表面物化性质因参数变化有较大差异。在浸渍比1∶1,烘干时间10 h,活化功率900 W,活化时间22 min的条件下,制得的生物质炭的比表面积为1 021 m2/g,亚甲基蓝值超过国家一级品标准1.70倍,表面富含微中孔结构和羟基、羰基、羧基等酸性官能团,中孔约占总孔的40%。静态吸附实验表明,溶液初始浓度对吸附有较大的影响,吸附量随初始浓度的增加,pH的升高及温度的上升而增大,Freundlich方程、Redlich-Peterson方程与Temkin方程能较好地描述等温吸附行为;吸附动力学结果表明,数据符合Elovich方程,吸附行为更倾向于化学吸附;热力学研究表明,吸附吉布斯自由能(ΔG0)0,吸附标准焓变(ΔH0)70 kJ/mol,说明该吸附为自发的吸热反应,且化学反应在吸附过程中发挥了重要作用。  相似文献   

10.
磁性花生壳基活性炭对亚甲基蓝的吸附特性   总被引:1,自引:0,他引:1  
以花生壳为原料,在K2CO3和Fe3O4共活化条件下制备了磁性花生壳基活性炭(MPSAC)。通过扫描电子显微镜、氮气吸附脱附等温线、X射线衍射和振动样品磁强计等手段表征了材料的结构和性质,测定了其对亚甲基蓝的吸附特性,考察了初始pH、吸附时间、MPSAC投加量、亚甲基蓝初始浓度和温度对吸附的影响。结果表明:(1)初始pH对亚甲基蓝的吸附影响较小;吸附时间对亚甲基蓝的吸附效率有明显的影响,在120min时吸附达到平衡,吸附过程符合准二级动力学方程。(2)吸附平衡数据更好地符合Langmuir方程,在25、35、45℃下,MPSAC的理论饱和吸附量分别为617.28、617.28、666.67mg/g。(3)热力学参数吉布斯自由能变0J/mol、焓变0J/mol、熵变0J/(mol·K),说明MPSAC对亚甲基蓝的吸附属于熵变增加的自发吸热反应过程。  相似文献   

11.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

12.
以稻秸为原料,分别通过水热炭化和热裂解炭化制备稻秸炭(分别记为水热炭和热解炭),通过傅立叶红外线光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和BET分析,比较两种稻秸炭的差异,通过亚甲基蓝、Cu~(2+)的吸附实验,分析其对有机物与金属离子的吸附性能。结果表明:水热炭表面含有更丰富的含氧官能团,结构更加规整,但比表面积低于热解炭;水热炭对亚甲基蓝的吸附能力略低于热解炭,但对Cu~(2+)的吸附能力显著高于热解炭;两种稻秸炭对亚甲基蓝的吸附及热解炭对Cu~(2+)的吸附通过表面吸附及颗粒内扩散共同发挥作用,更符合Freundlich模型;水热炭通过表面含氧官能团与Cu~(2+)相互作用,对吸附Cu~(2+)具有显著优势,Langmuir模型更适合于对其吸附数据进行拟合。  相似文献   

13.
以栗苞炭化料(C-BC)为原料,以NaOH为活化剂制备栗苞活化生物质炭(Na-BC),研究其对水中亚甲基蓝的吸附行为。选取炭碱比、活化温度和活化时间为影响因素,通过正交试验确定了最佳活化工艺,即炭碱比为1∶4,活化温度为800℃,活化时间为30 min,此时Na-BC的最大吸附量为609.38 mg·g~(-1)。对最优条件下制备的生物质炭进行SEM、BET等表征,比表面积达1 563.78 m~2·g~(-1),总孔容达1.452 cm~3·g~(-1)。吸附实验结果显示,吸附反应能较好用Langmuir模型和准二级动力学方程模型进行模拟,Na-BC对亚甲基蓝的吸附为自发吸热反应。通过热法与碱法再生处理饱和吸附生物质炭,再生后的Na-BC对亚甲基蓝具有较好的吸附能力。  相似文献   

14.
以小麦秸秆和活性污泥为原料,在3种温度下热解制备生物炭,使用傅立叶红外光谱(FTIR)和扫描电镜(SEM)对其结构和性能进行表征,探究了以不同生物炭为载体,以解磷菌为固定化菌株制备的固定化微生物对Pb~(2+)的吸附能力,同时研究了吸附时间和热解温度对固定化微生物吸附Pb~(2+)的影响。结果表明:小麦秸秆生物炭较活性污泥生物炭的表面官能团更为丰富,且小麦秸秆生物炭的芳香化程度随热解温度升高而增加;随着热解温度的升高,小麦秸秆生物炭的微孔逐渐发展,孔壁变薄,孔隙结构更为发达;以700℃热解的小麦秸秆生物炭为载体制备的固定化微生物(IBWS700)对Pb~(2+)的吸附量最高,对Pb~(2+)的吸附量可达89.39mg/g;IBWS700对Pb~(2+)的吸附动力学符合准二级动力学方程;IBWS700对Pb~(2+)的吸附可以用Langmuir模型较好地拟合。  相似文献   

15.
KOH活化花生壳生物质炭对亚甲基蓝吸附性能研究   总被引:2,自引:0,他引:2  
以花生壳生物质炭(P-BC)为原料,KOH为活化剂,采用化学活化法制得活化生物质炭(K-BC),通过考察对亚甲基蓝的吸附性能,研究了花生壳生物质炭的最佳活化条件,并利用N2吸附-脱附实验、SEM等对最佳活化条件下的生物质炭进行表征。结果表明,K-BC活化的最佳条件为碱炭比为1.5∶1,活化温度为800℃,活化时间为90 min,此时K-BC的比表面积达到597.93 m2/g,总孔容达到0.76 cm3/g。并考察了亚甲基蓝初始浓度、pH等对K-BC吸附亚甲基蓝的影响,随着初始浓度的增加,吸附平衡时间显著延长,亚甲基蓝去除率显著降低;当pH=6时,K-BC对亚甲基蓝的吸附量最大;K-BC对亚甲基蓝的吸附动力学曲线符合伪二阶动力学模型,吸附平衡时K-BC对亚甲基蓝的吸附能力为80~149.95 mg/g。  相似文献   

16.
以共沉淀法制备纳米Fe3O4,通过分散聚合法制备了磁性聚(苯乙烯-甲基丙烯酸)(Fe3O4@P(St-MMA))微球,采用光学显微镜、红外光谱、样品磁力振荡计和X射线衍射(XRD)对磁性微球进行了表征。考察了复合磁性微球在不同的p H、离子强度和吸附时间等条件下对其吸附性能的影响,运用吸附动力学和吸附等温线研究了磁性微球对亚甲基蓝的表面吸附机理。结果表明,制备的磁性微球粒径在100~200μm之间,表面含有羧基,饱和磁化强度为9.44 emu/g,在外加磁场的作用下能够快速分离出来。亚甲基蓝的吸附符合准二级动力学模型,在100 min内基本达到吸附平衡;25℃下,最大吸附量高达144.9 mg/g,且吸附随着p H值的升高而增加,当p H7时,吸附量基本不变;随着离子强度增加,吸附量逐渐下降;Langmuir等温线能比较好地拟合磁性微球对溶液中亚甲基蓝的吸附。  相似文献   

17.
为了考察以牛粪为原料制备的生物炭对水溶液中Cd2+的吸附效果,进行了吸附影响因素、吸附等温线和动力学研究。结果表明,当热解温度为700℃、投加量为20 g/L、溶液初始pH为5、水溶液Cd2+初始浓度为10 mg/L、吸附平衡时间为60 min和溶液温度为25℃时,对Cd2+的吸附效果最佳,Cd2+去除率可达99%以上。提高溶液温度有利于吸附。降低生物炭热解温度和投加量对吸附效果影响不大。Langmuir方程能更好地拟合生物炭对Cd2+的吸附等温过程,吸附过程符合准二级动力学方程。牛粪生物炭是性能优良、价格经济的水溶液中Cd2+的吸附剂。  相似文献   

18.
胺化麻黄废渣生物吸附剂对水中阳离子染料的吸附   总被引:1,自引:0,他引:1  
以麻黄废渣为原料,采用环氧氯丙烷和二乙烯三胺对其进行化学改性,得到麻黄废渣的改性产物。将其应用到中性红和亚甲基蓝2种染料模拟废水的吸附实验,并研究了p H值、吸附剂用量、吸附时间等因素对吸附的影响。结果表明,在p H值为5.5,吸附温度为25℃的条件下,用4 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为1 000 mg/L的中性红溶液0.5 h,去除率为99.89%;用10 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为500 mg/L的亚甲基蓝溶液1 h,去除率为99.38%。改性吸附剂对中性红和亚甲基蓝的吸附可以用准二级动力学方程描述,吸附等温线符合Langmuir和Freundlich模型,根据Langmuir方程,25℃时胺化麻黄废渣生物吸附剂对中性红和亚甲基蓝的最大吸附量分别为362.3 mg/g和152.7 mg/g。实验结果显示,胺化麻黄废渣生物吸附剂是一种吸附性能优异的吸附剂,用于处理染料废水有较好的应用前景。  相似文献   

19.
以一次性废竹筷为原料,K2CO_3为活化剂,通过炭化和活化2步制备活性炭。采用全自动比表面和孔径分布分析仪、傅里叶变换红外光谱仪(FTIR)、X射线衍射分析仪(XRD)对样品的孔隙性质、表面官能团和晶相变化进行了表征,并研究了活性炭对亚甲基蓝的吸附等温线。利用热重分析(TGA)对活性炭的制备过程进行了研究,并用Coats-Redfern法确定了热解反应活化能和反应模型。结果表明,活性炭的比表面积为1 262 m~2·g-1,总孔体积为0.624 cm~3·g-1。K2CO_3活化可导致热解炭的脂肪烃侧链断裂,并发生脱氢缩聚,其石墨微晶的轴向(100)堆积被破坏,径向(002)芳香环网状结构则更为有序。活性炭对亚甲基蓝的吸附过程符合Langmuir模型,最大吸附量为336 mg·g-1。废竹筷的2个主要热解阶段符合一维扩散模型和二级反应模型,其热解反应活化能分别为76.23和104.24 k J·mol-1;活化过程中残存木质素的热解可由一维扩散模型描述,K2CO_3浸渍使其热解反应活化能降低了44.28 k J·mol-1。  相似文献   

20.
黄麻纤维活性炭对亚甲基蓝和甲基橙吸附动力学   总被引:1,自引:0,他引:1  
以黄麻纤维为原料,采用磷酸活化法制备活性炭。研究黄麻纤维活性炭对亚甲基蓝和甲基橙2种染料的吸附行为。结果表明,采用磷酸制备的活性炭,由于表面含有羧基和含磷官能团等酸性基团,能够促进活性炭对亚甲基蓝的吸附;黄麻纤维活性炭对2种染料的平衡吸附量、初始吸附速率均随着初始浓度的增加而升高;相同条件下,黄麻纤维活性炭对亚甲基蓝的平衡吸附量大于甲基橙;黄麻纤维活性炭对两种染料的吸附行为更符合准二级动力学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号