首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附   总被引:1,自引:0,他引:1  
热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g~(-1)。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH~(3+)、NH_2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t~(-1)的经济效益,作为废水处理的吸附剂具有较好的应用前景。  相似文献   

2.
以造纸污泥为原料,利用热解的方法制备生物炭,然后用氢氧化钠对其改性,得到功能吸附材料(SAM),探讨了SAM对Cu~(2+)的吸附性能及其影响因素。采用扫描电镜(SEM)、红外光谱等手段揭示了SAM吸附Cu~(2+)的机理。结果表明:造纸污泥在300℃热解2h,然后用5mol/L的氢氧化钠改性,可制备得到对重金属具有良好吸附性能的SAM;当100mg/L的Cu~(2+)模拟废水的pH为6~7时,SAM投加量为0.010 0g/mL下Cu~(2+)去除率为99.15%,SAM投加量为0.002 5g/mL下SAM的吸附量为28.788mg/g;SAM吸附Cu~(2+)符合Langmuir吸附等温模型,属于单分子层吸附,其吸附机理主要表现为化学吸附,即SAM中含有丰富的羟基官能团,Cu~(2+)能与羟基形成稳定的络合物,通过化学键固定在SAM的表面及孔内,从而达到去除模拟废水中Cu~(2+)的效果。  相似文献   

3.
以小麦秸秆和活性污泥为原料,在3种温度下热解制备生物炭,使用傅立叶红外光谱(FTIR)和扫描电镜(SEM)对其结构和性能进行表征,探究了以不同生物炭为载体,以解磷菌为固定化菌株制备的固定化微生物对Pb~(2+)的吸附能力,同时研究了吸附时间和热解温度对固定化微生物吸附Pb~(2+)的影响。结果表明:小麦秸秆生物炭较活性污泥生物炭的表面官能团更为丰富,且小麦秸秆生物炭的芳香化程度随热解温度升高而增加;随着热解温度的升高,小麦秸秆生物炭的微孔逐渐发展,孔壁变薄,孔隙结构更为发达;以700℃热解的小麦秸秆生物炭为载体制备的固定化微生物(IBWS700)对Pb~(2+)的吸附量最高,对Pb~(2+)的吸附量可达89.39mg/g;IBWS700对Pb~(2+)的吸附动力学符合准二级动力学方程;IBWS700对Pb~(2+)的吸附可以用Langmuir模型较好地拟合。  相似文献   

4.
不同原料和炭化温度下制备的生物炭结构及性质   总被引:6,自引:0,他引:6  
以麦秆、稻杆和松木屑3种生物质为原料,在控制热分解条件下制备生物炭利用TG/DTG、Boehm滴定、FTIR、XRD、TEM和吸附实验等方法对不同原料在350、550和750℃3个炭化温度下制备的生物炭形貌及其表面化学性质进行了表征。结果表明:最大热解速率所对应温度以松木屑为最高,表示热稳定性最好;不同原料在相同炭化温度下所制得的生物炭所含表面含氧官能团种类和总量相近,但pH值和吸附能力差别较大,其中麦秆制得的生物炭pH值最大,松木屑制得的生物炭吸附能力最强;随着炭化温度升高,相同原料制得生物炭表面含氧官能团总量减少,pH值升高,纤维素和半纤维素特征峰消失,芳构化程度增加,吸附性能总体呈先上升后下降的趋势。  相似文献   

5.
采用水热炭化的方法制备柚子皮水热炭吸附剂,用红外光谱仪和氮吸附仪测定水热炭表面的官能团和孔结构,考察了吸附剂用量、溶液pH值、Cr(Ⅵ)初始浓度、吸附时间对吸附Cr(Ⅵ)的影响。结果表明:水热炭是典型的介孔材料且有较多的含氧官能团,有利于Cr(Ⅵ)的吸附。溶液pH值小于7时,吸附效果较好;当溶液中Cr(Ⅵ)离子的初始浓度为50mg·L~(-1),pH=6,吸附剂用量为0.4 g·(50 mL)~(-1)、吸附时间为90 min时、水热炭对Cr(Ⅵ)的吸附率和吸附量分别为99.03%、6.19 mg·g~(-1)。柚子皮水热炭对Cr(Ⅵ)的吸附过程符合准二级吸附动力学模型,且35、45、55℃的等温吸附数据拟合结果表明等温吸附过程符合Freundlich模型。  相似文献   

6.
KOH活化花生壳生物质炭对亚甲基蓝吸附性能研究   总被引:2,自引:0,他引:2  
以花生壳生物质炭(P-BC)为原料,KOH为活化剂,采用化学活化法制得活化生物质炭(K-BC),通过考察对亚甲基蓝的吸附性能,研究了花生壳生物质炭的最佳活化条件,并利用N2吸附-脱附实验、SEM等对最佳活化条件下的生物质炭进行表征。结果表明,K-BC活化的最佳条件为碱炭比为1.5∶1,活化温度为800℃,活化时间为90 min,此时K-BC的比表面积达到597.93 m2/g,总孔容达到0.76 cm3/g。并考察了亚甲基蓝初始浓度、pH等对K-BC吸附亚甲基蓝的影响,随着初始浓度的增加,吸附平衡时间显著延长,亚甲基蓝去除率显著降低;当pH=6时,K-BC对亚甲基蓝的吸附量最大;K-BC对亚甲基蓝的吸附动力学曲线符合伪二阶动力学模型,吸附平衡时K-BC对亚甲基蓝的吸附能力为80~149.95 mg/g。  相似文献   

7.
以一次性废竹筷为原料,K2CO_3为活化剂,通过炭化和活化2步制备活性炭。采用全自动比表面和孔径分布分析仪、傅里叶变换红外光谱仪(FTIR)、X射线衍射分析仪(XRD)对样品的孔隙性质、表面官能团和晶相变化进行了表征,并研究了活性炭对亚甲基蓝的吸附等温线。利用热重分析(TGA)对活性炭的制备过程进行了研究,并用Coats-Redfern法确定了热解反应活化能和反应模型。结果表明,活性炭的比表面积为1 262 m~2·g-1,总孔体积为0.624 cm~3·g-1。K2CO_3活化可导致热解炭的脂肪烃侧链断裂,并发生脱氢缩聚,其石墨微晶的轴向(100)堆积被破坏,径向(002)芳香环网状结构则更为有序。活性炭对亚甲基蓝的吸附过程符合Langmuir模型,最大吸附量为336 mg·g-1。废竹筷的2个主要热解阶段符合一维扩散模型和二级反应模型,其热解反应活化能分别为76.23和104.24 k J·mol-1;活化过程中残存木质素的热解可由一维扩散模型描述,K2CO_3浸渍使其热解反应活化能降低了44.28 k J·mol-1。  相似文献   

8.
以小麦秸秆为原料制备生物炭(BC),采用批量吸附实验研究BC对水环境中雌激素双酚A(BPA)、17α-乙炔基雌二醇(EE2)的吸附行为,并选用模型污染物菲作对比,探讨了重金属离子(Cu~(2+)、Cd~(2+)、Pb~(2+))对BC吸附雌激素的影响和作用机制。结果表明:BC对污染物的最大吸附能力为菲BPAEE2,其主要吸附机制为疏水性作用、π—π电子供受体作用、孔隙填充作用等。在重金属离子存在条件下,BC对污染物的吸附明显降低,一方面是因为重金属离子与BC表面含氧官能团发生络合作用竞争吸附点位;另一方面是因为重金属离子可与周围水分子之间形成三维水合金属离子进行孔隙堵塞。Pb~(2+)对BC吸附能力的抑制作用最弱,这主要是因为Pb的水合离子半径最小,孔阻塞和竞争作用最弱。  相似文献   

9.
采用花生壳和木屑为原材料分别在300、600℃限氧条件下热裂解制备4种生物炭,研究了其对阳离子型染料亚甲基蓝(MB)、阴离子型染料刚果红(CR)和重金属Pb(Ⅱ)的吸附等温线和吸附动力学效应以及生物炭上Pb(Ⅱ)的解吸再生效应。结果表明,相比Freundlich方程,生物炭对MB和Pb(Ⅱ)的吸附等温线更符合Langmuir方程。其中,生物炭对MB的吸附受到表面含氧官能团和平均孔径影响,对Pb(Ⅱ)的吸附机制以离子交换或共沉淀为主。相比Langmuir方程,生物炭对CR的吸附等温线更符合Freundlich方程,吸附机制主要以疏水作用为主。300℃热裂解花生壳制备的生物炭对MB吸附效果最好,最大吸附量达28.0 mg/g;600℃热裂解制备的生物炭对CR吸附效果最好;300、600℃热裂解花生壳制备的生物炭对Pb(Ⅱ)吸附效果均较好,最大吸附量分别为63.7、73.2 mg/g。生物炭对MB、CR和Pb(Ⅱ)的吸附基本在24 h内达到平衡,相比准一级动力学模型,吸附过程均更符合准二级动力学模型。0.1 mol/L盐酸能有效解吸4种生物炭吸附的Pb(Ⅱ)。生物炭的吸附效果和吸附机制与生物炭制备时的热裂解温度和原材料种类关系密切。  相似文献   

10.
以栗苞炭化料(C-BC)为原料,以NaOH为活化剂制备栗苞活化生物质炭(Na-BC),研究其对水中亚甲基蓝的吸附行为。选取炭碱比、活化温度和活化时间为影响因素,通过正交试验确定了最佳活化工艺,即炭碱比为1∶4,活化温度为800℃,活化时间为30 min,此时Na-BC的最大吸附量为609.38 mg·g~(-1)。对最优条件下制备的生物质炭进行SEM、BET等表征,比表面积达1 563.78 m~2·g~(-1),总孔容达1.452 cm~3·g~(-1)。吸附实验结果显示,吸附反应能较好用Langmuir模型和准二级动力学方程模型进行模拟,Na-BC对亚甲基蓝的吸附为自发吸热反应。通过热法与碱法再生处理饱和吸附生物质炭,再生后的Na-BC对亚甲基蓝具有较好的吸附能力。  相似文献   

11.
炭化温度是影响生物炭结构的重要因素,以废弃的枇杷籽作为生物质原材料,在400~800℃炭化温度内制备生物炭,对其理化性质进行表征,并研究生物炭对微生物菌群的吸附率。结果表明:随着炭化温度的上升,枇杷籽生物炭的产率下降,含氧官能团减少,芳香性结构更完全;在400~600℃炭化温度下,孔道变化明显,表面更粗糙,比表面积和总孔体积增大,中、微孔数量增多;当炭化温度升高到600℃以上,生物炭表面孔状结构发生坍塌,表面变平整,比表面积和总孔体积减小;炭化温度为600℃下制得的枇杷籽生物炭对大肠杆菌发酵液的吸附率为70%左右,对大肠杆菌悬浮液的吸附率为80%以上,枇杷籽生物炭对微生物菌群的吸附效果良好,经过后续优化有作为微生物载体的潜力。枇杷籽具有开发为生物炭并进行进一步应用的潜在价值。  相似文献   

12.
黄麻纤维活性炭对亚甲基蓝和甲基橙吸附动力学   总被引:1,自引:0,他引:1  
以黄麻纤维为原料,采用磷酸活化法制备活性炭。研究黄麻纤维活性炭对亚甲基蓝和甲基橙2种染料的吸附行为。结果表明,采用磷酸制备的活性炭,由于表面含有羧基和含磷官能团等酸性基团,能够促进活性炭对亚甲基蓝的吸附;黄麻纤维活性炭对2种染料的平衡吸附量、初始吸附速率均随着初始浓度的增加而升高;相同条件下,黄麻纤维活性炭对亚甲基蓝的平衡吸附量大于甲基橙;黄麻纤维活性炭对两种染料的吸附行为更符合准二级动力学模型。  相似文献   

13.
以甘蔗渣为原料,采用微波辅助磷酸活化法制备了同时富含中孔结构和含氧酸官能团的生物质炭,以氮气吸附、红外光谱FT-IR等技术对炭样品表面物化性质进行了表征,通过静态实验法测定了生物质炭对水中亚甲基蓝的吸附特性,分析了溶液pH、初始浓度、温度对吸附的影响,研究了不同pH下蔗渣生物质炭对亚甲基蓝的吸附行为,并从热力学及动力学角度探讨了生物质炭对亚甲基蓝的吸附机理。结果表明,不同制备参数下生物质炭的得率均大于39.2%,但表面物化性质因参数变化有较大差异。在浸渍比1∶1,烘干时间10 h,活化功率900 W,活化时间22 min的条件下,制得的生物质炭的比表面积为1 021 m2/g,亚甲基蓝值超过国家一级品标准1.70倍,表面富含微中孔结构和羟基、羰基、羧基等酸性官能团,中孔约占总孔的40%。静态吸附实验表明,溶液初始浓度对吸附有较大的影响,吸附量随初始浓度的增加,pH的升高及温度的上升而增大,Freundlich方程、Redlich-Peterson方程与Temkin方程能较好地描述等温吸附行为;吸附动力学结果表明,数据符合Elovich方程,吸附行为更倾向于化学吸附;热力学研究表明,吸附吉布斯自由能(ΔG0)0,吸附标准焓变(ΔH0)70 kJ/mol,说明该吸附为自发的吸热反应,且化学反应在吸附过程中发挥了重要作用。  相似文献   

14.
以木屑、二氧化硅为原料,采用慢速热解法制备了木屑生物炭(BC)和木屑-二氧化硅复合型生物炭(CBC),并对其物理化学性质进行表征,同时研究其吸附水中亚甲基蓝的吸附等温方程、动力学过程和影响因素。结果表明,和BC相比,CBC的比表面积、孔体积和平均孔径分别增加了2.85、7.00、1.21倍。CBC和BC对亚甲基蓝的吸附符合Langmuir吸附等温方程,其最大吸附量分别为26.60、5.37mg/g,CBC对亚甲基蓝的吸附能力更强。CBC和BC对亚甲基蓝的吸附动力学过程遵循准二级动力学方程。此外,和BC相比,CBC对亚甲基蓝的吸附效果受pH和离子强度影响较小。  相似文献   

15.
温度对畜禽粪便水热炭产率及特性的影响   总被引:1,自引:0,他引:1  
以猪粪、牛粪和鸡粪3种畜禽粪便为原料制备水热炭,研究了温度对畜禽粪便水热炭产率及其特性的影响,着重分析了不同温度(140~220℃)下水热炭的产率、元素组成、碳保留量、官能团及重金属含量的变化。结果表明:畜禽粪便水热炭产率为48.8%~74.2%,且随着温度的升高其产率逐渐降低;此外,49.6%~82.1%的碳被保留在水热炭中,低温利于碳的保留。水热炭的H/C随着温度的升高而逐渐降低,但—OH峰逐渐减弱。畜禽粪便经过水热炭化后,其重金属含量均有不同程度的增加,其中Cu、Zn和Cd的含量超标。重金属元素的相对富集系数1,由此可见,重金属除了部分保留在水热炭中外,还有部分重金属进入到热解液态产物中。  相似文献   

16.
利用简青霉菌丝球固定生物炭制得一种新型生物吸附剂,吸附处理亚甲基蓝(MB)和甲基橙(MO)两种染料,考察了接触时间、菌丝球和生物炭用量、p H、染料初始浓度等影响因子对处理效果的影响。结果表明,菌丝球固定生物炭不仅保留了两者的吸附能力,而且易于固液分离。含炭菌丝球对亚甲基蓝的吸附效果优于甲基橙。甲基橙和亚甲基蓝的吸附平衡时间分别为48 h和60 h。亚甲基蓝在碱性条件下的吸附去除效果更好,甲基橙的吸附最适p H范围为5~6。Langmuir等温模型比Freundlich等温模型更适合模拟含炭菌丝球对亚甲基蓝和甲基橙的吸附行为。实验结果可以为微生物和生物炭的联合应用提供科学依据。  相似文献   

17.
热解污泥制备生物炭是一种污泥资源化利用的主要处置方式,不同的反应条件对制得生物炭的品质存在显著的差异。以乙酸钾为添加剂,对城市脱水污泥(含水率80%)进行低温热解制备生物炭,考察了乙酸钾添加量、热解温度、热解停留时间及升温速率对生物炭性质的影响。通过N2吸附脱附、SEM、FT-IR等手段对原料污泥及生物炭进行了表征,实验结果表明,乙酸钾具有一定的扩孔作用,生物炭表面粗糙度明显增加,比表面积增大,吸附性能显著提高。当乙酸钾添加量4%,热解温度350℃,热解停留时间120 min,升温速率3℃·min~(-1)时生物炭的亚甲基蓝吸附量和比表面积分别为90.45 mg·g~(-1)、31.402 m2·g~(-1)。  相似文献   

18.
为了寻求蚯蚓粪的资源化途径,采用慢速热解制备蚓粪生物炭(VMBC),在探讨热解温度对生物炭(VMBC)基本理化性质影响的基础上,深入研究VMBC吸附甲基橙的性能。结果表明,提高热解温度,炭产率与C、H、O、N含量下降,灰分和比表面积则增大。高温有利于生物炭芳香性和疏水性形成。提高热解温度可以改善VMBC对甲基橙的吸附能力。此外,较高的甲基橙初始浓度可促进VMBC对甲基橙的吸附。较低的p H和较高的吸附温度有利于甲基橙的吸附。Freundlich模型可以较好的拟合VMBC对甲基橙的吸附,表明VMBC对甲基橙的吸附为多层非均相吸附,且较容易进行。二级动力学模型能够较好的拟合吸附过程,表明VMBC对甲基橙的吸附受化学作用的主导,且VMBC表面官能团在吸附过程中起到重要的作用。  相似文献   

19.
为了获得汞初始浓度、吸附温度以及气氛(O_2、CO_2、SO_2浓度)等不同吸附条件下生物炭的汞吸附特性,对等温和非等温条件下制备的核桃壳生物炭(分别记为WS_(iso)和WS_(var))进行了研究,并利用比表面积和孔隙度分析仪、傅立叶变换红外光谱仪表征生物炭的孔隙结构和表面官能团等微观特性,探究其影响机理。结果表明:WS_(iso)和WS_(var)孔隙结构及表面化学性质不同,其中WS_(iso)的累积孔体积较大,为0.130 8cm~3/g,WS_(var)的含氧表面官能团数量和种类较多;在相同吸附条件下,WS_(iso)的汞吸附效果整体上优于WS_(var);汞初始浓度、CO_2和O_2浓度的升高会对生物炭汞吸附性能起到促进作用;随着吸附温度和SO_2浓度的升高,生物炭的吸附性能有所下降。  相似文献   

20.
为获得吸附性能良好、便于回收利用的新型吸附剂以处理染料废水,采用超声辅助溶胶-凝胶法将铁酸镧(LaFeO_3)经过一步热解负载于生物炭制得生物炭/LaFeO_3磁性复合材料(BC/FL)。其表面形态、结构和组成分析表明:BC/FL的比表面积、总孔容及平均孔径分别为34.67m2/g、0.041cm3/g和7.82nm,磁饱和强度达到40.283A/m,表面含有C=O、C=C=N、C≡C等官能团。批量吸附实验表明,25℃下,当亚甲基蓝(MB)的初始质量浓度为30mg/L时,BC/FL的最佳投加量为1.5g/L,吸附反应在120min达到平衡,去除率可达92.3%,且吸附效果基本不受pH影响。BC/FL对MB的吸附符合准二级动力学模型,Langmuir模型可描述其等温吸附过程。化学吸附占主导地位,主要机理为静电吸附、氢键和π-π共轭作用。吸附反应为单分子层吸附且为自发的吸热过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号