首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同温度下制备花生壳生物炭的结构性质差异   总被引:1,自引:0,他引:1  
热解温度是影响生物炭结构性质的重要因素。在200~700℃温度范围内,以花生壳为生物质原材料制备生物炭,并对生物炭的理化性质及结构组成进行表征,以期了解花生壳生物炭特征及其随热解温度变化的规律。结果表明,生物炭的产率随着温度的升高而减少,灰分和pH随着温度升高而增加。生物炭的C含量随着温度升高而增加,H元素含量却随着温度升高而减少。H/C随着温度的增加而减少。红外光谱分析表明,随着温度的升高生物炭的烷基基团减少,芳香化程度逐渐升高。500℃制备生物炭的K_2Cr_2O_7和KMnO_4氧化碳损失量最低,分别为18.6%和1.70%。X射线衍射分析表明,随着温度的升高,生物炭中草酸钙矿物分解消失,碳酸钙矿物形成。  相似文献   

2.
以泡饮过的废弃茶叶为实验原料,通过不同热解温度(300、400、500和600℃)和热解时间(1 h和2 h)制备生物炭,探讨不同热解条件对茶叶渣生物炭(TSBC)的特性及其对镉(Cd)污染土壤钝化效果的影响。结果表明:热解温度的升高可明显增加TSBC的p H和比表面积,降低生物炭的产率、电导率和表面官能团的数量,使TSBC具有弱碱性、较大比表面积和较强的稳定性,对改良酸性土壤和吸附重金属存在一定潜力;而热解时间对其特性没有明显差异,与对照组相比,添加TSBC明显增加了Cd污染土壤的p H、有机碳(SOC)和可溶性有机碳(DOC)含量,但随着制备温度的升高,Cd污染土壤中SOC和DOC增加幅度逐渐降低。添加TSBC显著降低Cd污染土壤中可交换态镉的比例,当热解温度为500~600℃时降幅最显著,其下降比例与对照相比最高可达25.56%;残渣态镉比对照增加了0.88~1.18倍。因此,TSBC对镉污染土壤有较好的钝化效果,这为重金属污染土壤的修复和生活废弃物的资源化利用提供了理论依据。  相似文献   

3.
以废弃生物质松子壳为原料,利用水热碳化法在180~250℃下制备生物炭,考察添加金属离子(Ca~(2+)、Zn~(2+)、Al~(3+)和Fe~(3+))对松子壳生物炭的影响。通过元素分析、傅里叶红外光谱、扫描电子显微镜等技术对松子壳生物炭的结构进行了分析和表征。结果表明,4种金属离子均对松子壳水热碳化起到促进作用,金属离子的加入可在较低温度下得到具有较高碳含量及热值的生物炭。添加金属离子的水热炭化过程在180~230℃以脱水为主,伴随脱羧反应,在230~250℃以脱甲烷化为主。在4种金属离子中,Fe~(3+)对松子壳水热碳化的促进作用最大,温度180℃时,添加Fe~(3+)所得生物炭的碳含量和热值分别为66.59%和24.40 MJ·kg~(-1),是在纯水中180℃时生物炭的碳含量的1.29倍,热值的1.31倍。在扫描电镜中发现添加Fe~(3+)生成的生物炭出现的球形结构较多。通过调节温度以及添加适合的金属离子可实现对炭微球的粒径及数量的控制。  相似文献   

4.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

5.
热解温度和时间对生物干化污泥生物炭性质的影响   总被引:5,自引:0,他引:5  
污泥热解制备生物炭是一种很有潜力的污泥资源化处置方式,然而,生物炭产量和品质因污泥原料性质、热解条件(如热解温度、时间)的不同而存在显著差异。以生物干化污泥为主要研究对象,系统考察了热解温度及时间等热解因素对生物炭品质的影响。实验结果表明,随着热解温度的升高(300~700℃),热解时间的增加(2~4 h),生物炭产率均下降。低温热解(300℃)生物炭,偏酸性,而高温热解时(700℃)生物炭,偏碱性。生物炭N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提结果表明,高温热解明显降低了生物炭中微量元素的生物有效性。  相似文献   

6.
热解温度和时间对污泥生物碳理化性质的影响   总被引:2,自引:0,他引:2  
污泥热解制备生物碳是一种环境友好的污泥处理处置途径。重点考察了热解温度及时间等因素对生物碳品质的影响。污泥取自厦门某城市污水处理厂脱水污泥(初始含水率为80%),热解实验结果表明,随着热解温度的升高(从300~700℃),热解时间的增加(2~4 h),生物碳产率均下降;低温热解时(300℃),生物碳偏酸性,而高温热解时(700℃),生物碳偏碱性;生物碳N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提实验结果表明,高温热解能降低污泥生物碳中微量元素的有效性。  相似文献   

7.
在管式炉对Cd超积累植物东南景天(Sedum alfredii)进行热解,研究热解过程中Cd的迁移和形态转化,并在最佳温度条件下探究制备的东南景天生物炭对Cd的吸附作用。结果表明,随着温度上升,生物炭产率下降,挥发分增加;温度能影响Cd在气、液、固三相中的分布,温度升高能明显促进重金属由固相向气相迁移;生物炭中Cd形态受温度影响,随温度升高,对环境影响较大的水溶态和酸溶态Cd含量呈现出降低趋势,在700℃以上时,大部分Cd是以稳定的可氧化态、可还原态以及残渣态形式存在;800℃热解得到的东南景天生物炭对Cd具有一定的吸附效果,最高吸附量达到28.7mg/g。通过合理控制热解温度能够实现炭产物的稳定化,并可安全利用到重金属污染水体或者农田污染治理中。  相似文献   

8.
市政污泥水热炭化废水组成成分特征   总被引:1,自引:0,他引:1  
污泥水热炭化处理被认为是极具潜力的污泥安全处置与资源化利用的技术措施之一。为了解废水中碳、氮、磷、钾和重金属含量随水热炭化反应温度和反应时间的变化规律,对市政污泥190℃和260℃水热炭化不同时间(1、6、12、18和24 h)后的废水组成成分进行了研究。结果表明,水热炭化处理后,废水颜色由黑色变成浅黄色;pH由6.40提高到9.14;TOC、COD和BOD5最高分别增加了13 175 mg/L、55 998 O2mg/L和31 723 O2mg/L;氮和钾含量显著提高,但磷含量降低;Cd、Cr含量由未检测到分别增加到0.060 mg/L和2.326 mg/L,As、Pb含量均由0.032 mg/L分别增加到1.408 mg/L和0.590 mg/L,但Cu、Mn及Zn含量降低。比起反应时间,反应温度对废水组成成分的影响更大。  相似文献   

9.
椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附   总被引:2,自引:0,他引:2  
为了研究不同裂解温度制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附性能差异及其机理,并为制备高效吸附生物炭提供依据,采用Langmuir和Freundlich模型拟合分析了300、500和700℃3个裂解温度下制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的等温吸附曲线,使用元素分析仪、Boehm滴定法、扫描电子显微镜等研究了不同温度制备的生物炭的组成与理化性质。结果表明,Langmuir模型和Freundlich模型都能较好地拟合生物炭对这些重金属的吸附,提高生物炭的制备温度可增加其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量,同时降低其对As(Ⅲ)和Cr(Ⅵ)的最大吸附量;制炭温度升高引起的生物炭C含量、灰分含量、p H、CEC的升高和生物炭表面积增大是导致其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量增大的主要原因。而随着制炭温度的上升,O、H元素含量下降引起的碱性官能团的增加,和羟基和酚羟基官能团的减少是生物炭对As(Ⅲ)和Cr(Ⅵ)吸附量下降的主要因素。  相似文献   

10.
采用固定床反应器对脱水污泥在热解过程中N、P、K及重金属的迁移行为进行了研究,以期获得营养元素N、P、K含量较高、重金属含量较低的生物炭,将其作为土壤肥料。结果表明,污泥样品中N主要以铵盐-N、蛋白质-N、吡咯-N、吡啶-N 4种形态存在,其中吡咯-N占总氮的45.22%,热解后各组分在生物炭中所占比例发生变化,其中吡咯-N的减少较为明显,800℃的污泥炭中减少到3.24%。随着热解温度由400℃升高到800℃,N在污泥炭中的含量逐渐降低,气相中的含量明显增加,但液相中在600℃后减少;P和K几乎全部集中在污泥炭中,其中400℃污泥炭中的P主要以焦磷酸盐形式存在、800℃时则主要以偏磷酸盐存在;重金属在污泥炭中出现不同的富集,其富集程度顺序为:CuNi、AsPb、CrZnCd。  相似文献   

11.
稻草的水热碳化研究   总被引:3,自引:0,他引:3  
利用水热碳化技术,在1 000 mL的反应釜中,考察了反应温度和停留时间对于稻草水热碳化的影响。结果表明,稻草碳化得到的气相产物主要为CO2、液相产物主要为乙酸和葡萄糖。随着反应温度和停留时间的提高,CO2、乙酸的产率以及生物炭(固相产物)的能量密度呈上升趋势,而生物炭的产率则呈现相反的趋势。在低温条件下(200℃左右),可获得较高葡萄糖产率。生物炭的吸水性实验表明,在反应温度为260℃,停留时间为1 h的条件下,生物炭的产率达到稳定。扫描电镜分析结果说明,经过碳化后的稻草整体呈现碎片状态,并伴有大量蜂窝状结构。  相似文献   

12.
采用水热技术处理涂料废渣,考察了水热温度、反应时间、含水率和投碱量对涂料废渣减量及其产物特性的影响,并用SEM、元素分析对涂料废渣进行表征。实验结果表明:随着水热温度的升高及时间的延长,涂料废渣减量效果及水热液中COD、TN浓度不断增加,固体产物的热值也随之增加,而含水率对涂料废渣减量的影响不大;随着碱投加量的增加,涂料废渣减量效果和水热液中COD、TN浓度逐渐提高,固体产物的热值呈不规则变化。水热温度220℃、水热时间4 h、含水率77.5%、投碱量0.17 g(NaOH,投加量以每克干物质(DS)计)为涂料废渣减量的最佳反应条件。在最优条件下,总减量率和干重减量率分别为79.1%和52.1%,含水率为47.2%。水热固体产物热值较高,可以作燃料为其他工艺提供热能。  相似文献   

13.
为了考察燃料燃烧过程中重金属的迁移转化规律,对污泥、煤与木屑及其混合物在不同温度下氧气中燃烧灰渣中的重金属元素进行分析。结果表明,燃料中重金属在高温燃烧时表现出不同的挥发特性,大部分元素随着温度的升高挥发率增加,其中Cd、Pb和Zn元素挥发性较强,Cr、Cu和Ni挥发性较弱。污泥与木屑混合燃烧灰渣仍以污泥灰为主,重金属含量与污泥灰相近,污泥中混入煤后使灰中大部分重金属含量有所降低。燃烧过程会改变重金属存在形态,污泥与煤原料中以酸溶态和可还原态存在的重金属含量较高,具有较强的生物有效性和迁移性,而燃烧灰渣中酸溶态和可还原态含量显著下降,混合燃烧灰渣中除As外的其他重金属几乎全部以残渣态存在,其含量达到90%以上,焚烧过程有效降低了燃料灰渣中重金属的生物毒性。  相似文献   

14.
采用旋转管式加热炉实验台在惰性条件下对城市污泥进行了热解实验,系统研究了不同热解温度对气态产物和固态产物成分的影响。结果表明:污泥经热解后的产物在600℃时,比表面积最大值为158.02 m2/g,孔容最高为109.58 mm3/g。随着热解温度的升高,气态产物和液态产物的产率增加,而固态产物则减少。在热解温度450~750℃,热解产物中的固态产物产率由53.65%降至31.69%;气体产率从11.23%升至24.74%,其中H_2、CO、CO_2、CH_4、C_2H_4、C_2H_6和C_2H_2占总气体的75%以上,H_2含量随着热解温度的升高而升高。热解气中小分子碳氢化合物含量较高,600℃时热解气体中含氢气体主要包括:H_2、CH_4、C_2H_4、C_3H_8、正丁烷(C_4H_(10))及C_2H_6等,其中H_2和CH_4含量分别为27.98%和23.63%。CH4、C3H8、C_4H_(10)等气体的含量随着热解温度的升高呈现先增后减趋势,且在600℃达到最大值,C_2H_2、C_2H_6在450℃时其浓度最高。随着热解温度的升高,N、C和H3种元素在热解固态产物中的质量分数呈明显下降的趋势。  相似文献   

15.
生物炭中溶解性碳黑(DBC)具备强迁移性,其理化性质会随着原生质和热解条件的变化而改变。菲具有强生态毒性及致癌特性。以4种DBC(源于花生壳原生质及其200、400、500℃下热解得到的生物炭)为吸附剂,探究了它们的理化性质及对菲的吸附行为和作用机制。结果表明:(1)随着热解温度的升高,花生壳生物炭中DBC的总有机碳(TOC)含量减少。200℃热解得到的生物炭DBC芳香性最强,对菲的吸附能力也最强。(2)随着热解温度的升高,DBC中会形成更多的酚羟基和醚键,而脂肪族碳链、醇或酯会逐渐断裂。  相似文献   

16.
以废液晶显示面板中的偏光片为原料,对其进行水热产乳酸研究,并考察了反应温度(250~375℃)、反应时间(1~11min)以及氧化剂(体积分数为30%的H2O2)投加量(0~1.0 mL)对乳酸产率的影响.结果表明,反应温度、反应时间均会对偏光片水热产乳酸产生一定影响,乳酸产率随反应温度和反应时间的增加呈现先增加后减少的趋势,最佳水热条件为反应温度350℃,反应时间5 min,此时乳酸产率达17%左右.投加氧化剂能显著提高乳酸的产率,在最佳水热条件下,氧化剂投加量为0.6 mL时乳酸的产率可提高到21%.  相似文献   

17.
生物炭作为一种绿色环保的功能材料因其在污水处理和污染土壤修复方面具有显著效果而受到极大关注.采用红外光谱、元素分析仪及微孔分析对不同温度(200、300、400、500和600℃)条件下制备的木屑和麦秆生物炭进行特性表征,并采用制备的生物炭净化石油污染土壤,分别考察了污染物性质、生物质原料和热解温度对其净化效果的影响.结果表明,随着热解温度的增高,生物炭芳香化程度增加,极性降低,微孔结构逐渐发育,表面积增大.加入生物炭33 d后,污染土壤中总石油烃及其组分烷烃的浓度比对照略有降低,而PAHs浓度下降显著.随着热解温度升高,2种生物炭对PAHs的吸附强度均逐渐增大,芳香度增高、表面积增大是强吸附的主要原因.2种生物炭在400℃及以下温度制备时对PAHs的吸附强度为:木屑生物炭>麦秆生物炭;而400℃以上温度制备的生物炭吸附强度则相反,即麦秆生物炭>木屑生物炭,说明生物炭原料对其吸附强度也具有显著影响.  相似文献   

18.
针对Cu/ZSM-5高温水热失活的问题,通过浸渍法合成了Cu/ZSM-5催化剂,并对该催化剂进行了不同温度和不同H_2O(g)含量的水热老化。采用比表面积分析、SEM观察、X射线衍射分析、H_2-程序升温还原、X射线光电子能谱分析对Cu/ZSM-5催化剂的理化性能进行了表征。分别研究了不同水热老化条件下Cu/ZSM-5催化剂的NH_3-SCR性能和水热失活机理。结果表明,经水热处理后,各Cu/ZSM-5催化剂的NH_3-SCR性能均有所降低。随着老化温度的提高,催化剂的分子筛载体出现结构坍塌,比表面积减小,孔容积增大,但仍保持MFI结构,老化温度的提高同样使催化剂活性Cu~(2+)减少并一部分转化为CuO微晶,而H_2O(g)含量的变化对催化剂的物理化学结构的影响较小。在高温水热老化过程中,温度对催化性能劣化的影响大于水蒸汽含量,是催化剂失活的主要原因。  相似文献   

19.
为探究竹基活性炭对土壤的修复及改良效果,用水蒸气活化法制备出竹基活性炭,分析其孔结构特性,采用盆栽实验的方法,研究不同添加量(0%、10%、20%)的竹基活性炭对土壤性质、土壤重金属含量、植物株高和生物量以及植物地上和地下部分重金属含量的影响,研究发现随着竹基活性炭添加量的升高,土壤p H和有机质逐渐上升,且土壤中的重金属含量下降明显。其中,添加量高的竹基活性炭对土壤中的重金属Cu、Pb、Zn的去除率可达94.8%、82.1%、87.7%。添加竹基活性炭可增加百日草株高及生物量,其根和茎叶部分的重金属浓度有所降低,表明竹基活性炭吸附土壤重金属性能显著。同时,利用近红外光谱技术结合偏最小二乘法建立了不同竹基活性炭添加比例的土壤中的铜离子含量预测模型。该模型相关系数R~2达到0.995 9,相对分析误差RPD大于10,模型相关性好,具有良好的预测性能。  相似文献   

20.
化学固定是重金属污染土壤修复及改良技术之一。通过盆栽实验,研究了水稻秸秆炭及其与石灰、磷酸盐组合改良剂对石漠化土壤-玉米体系中As、Zn和Pb 3种重金属迁移的影响,分析了玉米及土壤重金属含量、形态变化。结果表明,几种改良剂均显著促进了玉米生长,地上部分生物量:水稻秸秆炭石灰+水稻秸秆炭石灰秸秆磷酸盐+水稻秸秆炭磷酸盐对照。水稻秸秆炭、石灰及其组合均能够提高土壤pH值,抑制重金属向玉米地上部分迁移。添加改良剂后土壤中As的弱酸提取态和可还原态含量显著降低,均小于3 mg·kg~(-1)。水稻秸秆炭、秸秆与石灰及其组合均能够降低土壤中重金属提取态和还原态量,能够降低玉米籽粒中重金属的含量,但玉米籽实中Pb依然超标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号